
CORRELATION OF THE NUMBER OF IMAGES OF AN

N-POINT GRAVITATIONAL LENS AND THE NUMBER OF

SOLUTIONS OF ITS SYSTEM

A.T.Kotvytskiy1,2, S.D.Bronza2,V.Yu. Shablenko1

1 Karazin Kharkov National University,
Svobody Square 4, Kharkiv, 61022, Ukraine, kotvytskiy@gmail.com

2 Ukrainian State University of Railway Transport,
Feierbakh Square 7, 61050, Kharkiv, Ukraine bronza semen@mail.ua

ABSTRACT. In this paper, we study the correlation
between the number of solutions of a system of lens
equations and the number of source images that a
gravitational lens has. We defined the concept of
an image in a gravitational lens. To find the set of
solutions of a system of lens equations, we applied
methods of algebraic geometry.
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1. Introduction

One of the main theoretical problems of gravita-
tional lensing is the study of images. This problem
is studied in some publications (Bliokh et al., 1989;
Zakharov, 1997; Schneider, 1999). The images in
these publications are studied mostly by numerical
methods, sometimes with elements of an analytical
description. In this paper, we study the images of a
point source in N-point gravitational lens analytically.
In this paper, we continue to investigate gravitational
lenses by methods of algebraic geometry. The results
obtained by these methods previously published in
(Kotvytskiy & Bronza, 2016; Kotvytsky et al., 2016;
Kotvytskiy et al., 2017; Bronza & Kotvytskiy, 2017).

2. Images in gravitational lensing

In astrophysical literature, the concept of an image
in a gravitational lens is usually not defined. In terms
of empirical astrophysics this concept is obvious. How-
ever, the absence of a definition can lead to ambiguous
understanding of the concept and a different interpre-
tation of some results, for example, the theorem on
the odd number of images (Zakharov, 1997; Schneider,
1999). The terminology developed in algebraic geom-
etry enables us to define the concept of an image in a

gravitational lens. Based on this definition, we can re-
fine certain known statements and formulate new ones.
The equation of N-point lens (in dimensionless form)

has the form:

y⃗ = x⃗−
∑
i

mi
x⃗− x⃗i

|x⃗− x⃗i|2
, (1)

where x⃗i - are the radius vectors of the point masses

entering the lens, and mi,
∑
i

mi = 1 − their dimen-

sionless masses.

Equation (3) in the coordinate form has the form:
y1 = x1 −

N∑
i=1

mi
x1−ai

(x1−ai)
2+(x2−bi)

2

y2 = x2 −
N∑
i=1

mi
x2−bi

(x1−ai)
2+(x2−bi)

2

, (2)

where ai and bi are the coordinates of the radius-vector
l⃗i, i.e. l⃗i = (ai, bi).
The system (2) is a system of two rational equa-

tions (over the field of real numbers) in two variables.
Equations (2) are given in Cartesian coordinates on the
plane. In terms of algebraic geometry, the image of a
source in N-point gravitational lens can be defined as
follows:
Definition. An image of a point source in N-point

gravitational lens will be called the real solution of sys-
tem (2) without regard to multiplicity. The set of im-
ages is the set of different real solutions of this system.
Let us investigate the set of real solutions of sys-

tem (2). We transform the equations of the system to
polynomial form:{

F1 (x1, x2, y1) = 0
F2 (x1, x2, y2) = 0

(3)

The equations of system (3) will be studied over the
field of complex numbers.
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The system (3) is defined in. System (3) is not equiv-
alent to system (2), but it follows from it.
We can compute the set of solutions of system (2)

from the set of real solutions of system (3) if we remove
solutions from it in which system (2) is not defined.
These solutions are the coordinates of the point masses.
We directly check out that the points with coordi-

nates (ai, bi), i = 1, ..., N , are solution of system (3),
but system (2) is not defined in these points.
Let f1 and f2 be the left-hand sides of the first and

second equations of system (2), M(f1, f2) be the solu-
tion set of system (2), V (F1, F2) be the solution set of
system (3), and ReV (F1, F2) ⊂ V (F1, F2) the subset
of its real solutions, then relation:

M (f1, f2) = ReV (F1, F2) / {∪ (ai, bi)} . (4)

From the theorem on the structure of the set of
solutions of a system of polynomial equations, see
(Arzhancev, 2003) it follows that the set V (F1, F2) can
be represented in the form

V (F1, F2) =
(
V 0 (F1, F2)

)
∪
(
V 1 (F1, F2)

)
, (5)

where V 1 (F1, F2) is the set of solutions depend-
ing on single parameter, and V 0 (F1, F2) is the dis-
crete set of solutions of system (3). The dimension
dimV 1 (F1, F2) = 1, dimV 0 (F1, F2) = 0.
There are several theorems that answer the ques-

tion: is the set empty, see for example (Walker, 1950;
Kalinina, 2002)? In (Bronza & Kotvytskiy, 2017), we
present an algorithm that allows us to describe this set
analytically, if it is not empty. If the set V 1 (F1, F2)
is not empty, then the equations of system (3) have a
common component. The equation of the general com-
ponent can be obtained from its analytical description.
The set M (f1, f2) can be represented in the

form: M (f1, f2) =
(
M0 (f1, f2)

)
∪

(
M1 (f1, f2)

)
,

where M0 (f1, f2) = ReV 0 (F1, F2) / {∪ (ai, bi)} and
M1 (f1, f2) = ReV 1 (F1, F2) / {∪ (ai, bi)} .
It is known that the set M1 (f1, f2) , for a point

source in single-point lens is not empty, see for ex-
ample (Bliokh et al., 1989; Zakharov, 1997; Schnei-
der, 1999), coincides with V 1 (F1, F2) , see (Bronza &
Kotvyskiy, 2017) and is Einstein ring. But for a point
source in symmetric 2-point lens, we proved (Bronza
& Kotvyskiy, 2017) that the set M1 (f1, f2) is empty
and put forward hypothesis: for N-point lens this set
is empty for N > 1.
To study the set of solutions V 0 (F1, F2) of sys-

tem (3) we use the Bezout theorem, see for exam-
ple (Walker, 1950), (Kalinina, 2002; Arzhancev, 2003;
Reid, 1988).
Theorem 1. The number of intersection points

of plane curves Φ1 and Φ2 is equal to n · m, where
m = degΦ1 and n = Φ2, if the curves: not have
common components, are defined over an algebraically
closed field, are considered on the projective plane,

points of intersection are counted taking into account
the multiplicity.
The Bezout theorem, in our case, is equivalent to the

following
Theorem 2. The system of polynomial equations{

Φ1 (X0 : X1 : X2) = 0
Φ2 (X0 : X1 : X2) = 0

(6)

has in the projective plane CP 2, counting multiplicity,
exactly m ·n solutions, where, m = degΦ1 and n = Φ2,
if gcd (Φ1,Φ2) belongs to the coefficient field C.
In the equations of system (3) we pass to homoge-

neous coordinates, which are projective. Let:{
x1 = X1

X0

x2 = X2

X0

(7)

The system (7) defines surjective mapping, ℑ : C2 →
CP 2, which defines the left-hand sides of the equations
of system (6): Φ1 (X0 : X1 : X2) = X2N+1

0 F1

(
X1

X0
, X2

X0
, y1

)
Φ2 (X0 : X1 : X2) = X2N+1

0 F2

(
X1

X0
, X2

X0
, y2

) , (8)

The functions Φ1 = Φ1 (X0 : X1 : X2) and Φ2 =
Φ2 (X0 : X1 : X2) are homogeneous functions of degree
2N +1. The triple of complex numbers (X0 : X1 : X2)
is the coordinates of the point and specifies point
p ∈ CP 2. The triple (λX0 : λX1 : λX2) specifies the

same point if λ ̸= 0. If, at least one of the coordinates
of the point p is equal to zero, say that this point is
irregular. Otherwise, the point is called regular.
The set of points CP 2 one of the coordinates, which

is equal to the number h ̸= 0, is called affine map
on CP 2 and denoted by A2 (h). The complement
of CP 2\A2 (h) consists of an one-dimensional com-
plex projective subspace, which is called infinitely dis-
tant line of the affine map A2 (h), see for example
(Arzhancev, 2003; Reid, 1988). The infinitely distant
line of any affine map A2 (h) is evidently irregular.
For example, if we set Theorem 3. In a situation

of general position (the Jacobian of the system of lens
equations is not equal to zero), the number of point
images in N-point gravitational lens has parity opposite
to the parity of the number N., then the set of points
CP 2 with coordinates (1 : X1 : X2) will be affine map
of A2 (1), and the infinity of the straight line of this
map will be given by equation X0 = 0.
We have
Theorem 3. In a situation of general position (the

Jacobian of the system of lens equations is not equal
to zero), the number of point images in N-point grav-
itational lens has parity opposite to the parity of the
number N .
In the proof of Theorem 2 we use the following
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Lemma. The number of irregular solutions of sys-
tem (6), on line X0 = 0, is 2N .
Proof. Using (8), we reduce the system (6) to the

form:

(X1 −X0y1)
N∏
i=1

[Γi]−X2
0

N∑
j=1

mj (X1 −X0aj)×

×
N∏

i=1,i̸=j

[Γi] = 0

(X2 −X0y2)
N∏
i=1

[Γi]−X2
0

N∑
j=1

mj (X2 −X0bj)×

×
N∏

i=1,i̸=j

[Γi] = 0

,

(9)

where Γi = (X1 −X0ai)
2
+ (X2 −X0bi)

2
.

Let X0 = 0. We have:
X1

N∏
i=1

(
X2

1 +X2
2

)
= 0

X2

N∏
i=1

(
X2

1 +X2
2

)
= 0

⇒

{
X1

(
X2

1 +X2
2

)N
= 0

X2

(
X2

1 +X2
2

)N
= 0

(10)

⇒
(
X2

1 +X2
2

)
= 0 ⇒ X1 = ±iX2 ⇒

{
X1 = a
X2 = ±a

(11)

Finally we have two N-fold solutions: P1 =
(0 : a : ia) and P2 = (0 : a : −ia) .
Proof of Theorem 2. For the degrees of the poly-

nomials of systems (3) and (6) we have: degF1 =
degF2 = degΦ1 = degΦ2 = 2N + 1. By Bezout’s
theorem, the system of equations (6) has (2N + 1)

2

solutions, which include an even number 2q of complex
conjugate solutions and P = 2N irregular solutions.
Therefore, the number of real solutions of system (6).

card
(
ReV 0 (F1, F2)

)
= (2N + 1)

2 − 2q − P = (12)

= (2N + 1)
2 − 2q − 2N = 4N2 + 2N + 1− 2q.

From the fact that the restriction of the inverse map-
ping ℑ−1 : CP 2 → C2 to the affine map A2 (1) is a
bijection that is given by the equations: X0 = 1, X1 =
x1, X2 = x2, we have:

card
(
M0 (f1, f2)

)
= card

(
ReV 0 (F1, F2)

)
−N =

(13)

= 4N2 +N + 1− 2q.

In a situation of general position, the point source
is not on the caustic, therefore, all elements of the set
ReV (f1, f2) are different. In this case, each point of
the set ReV (f1, f2) is, by definition, an image. It fol-
lows from (13) that the parity of the number of images

is opposite to the parity of the numberN . The theorem
is proved.
Theorem 3 does not contradict the theorem on the

oddness of the number of images in transparent lenses
(Bliokh, 1989).
In the special case, for 1-point lens the number of

images is: 4N2 +N + 1− 2q = 6− 2q - even number;
for 2-point lens: 4N2 + N + 1 − 2q = 19 − 2q - odd
number, and so on.

5. Conclusions

In this article, we applied methods of algebraic
geometry to determine number of images in gravity
lens. Proved that the parity of the number of images
is opposite to the parity of the number.

References

Arzhancev I.V.: 2003, Basisy Grebnera i systemy
algebraicheskikh uravneniy [in Russian]. Letnyaya
shkola, Sovremennaya matematika. Moskow, P. 68.

Bliokh P.V. & Minakov A.A.: 1989, Gravitational
Lenses [in Russian], Naukova Dumka, Kiev.

Bronza S.D.: 2016, Zbirnik naukovih prats, Kharkiv,
UkrURT, 68 [in Russian].

Bronza S.D., Kotvytskiy A.T.: Mathematical bases of
the theory of N-point gravity lens.

Bronza S.D., Kotvytskiy A.T.: 2017, The Journal of
Kharkiv National University, ser. Physics,
26(1121), 6.

Kalinina E.A., Uteshev A.Yu.: 2002, Teoria
isklyucheniya, SPBU, Saint Petersburg, 72.

Kotvytskiy A.T., Bronza S.D.: 2016, Odessa Astron.
Publ., 29, 31.

Kotvytskiy A.T., Bronza S.D., Vovk S.R.: 2016, The
Journal of Kharkiv National University, ser.
Physics, 24(1119), 55.

Kotvytskiy A.T., Bronza S.D., Nerushenko K.Yu.,
Shablenko V.Yu.: 2017, Zbirnik naukhovih prats VI
Mizhregionalnoyi naukovo-praktichnoyi konferencii
”Astronomiya i syogodennya”, Vinnitsya, [in Ukrai-
nian], 198.

Lang S.: Algebra. Columbia University. New York,
1965.

Reid Milies A.: 1988, Undergraduate Algebraic Geo-
metry, 151.

Schneider P., Ehlers J., Falco E.E.: 1999, Gravitational
lenses, 560.

Van Der Waerden B.L.: 1971, Algebra I, II, P. 456.
Walker R.J.: 1950, Algebraic curves, P. 236.
Zakharov A.F.: 1997, Gravitacionnye linzy i mikro-

linzy, 328.


