On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems.
 II. Abstract Theory

V.I. Khrabustovsky
Ukrainian State Academy of Railway Transport
7 Feyerbakh Sq., Kharkov, 61050, Ukraine
E-mail:khrabustovsky@kart.edu.ua

Received February 3, 2004

Special maximal semi-definite subspaces (maximal dissipative and accumulative relations) are considered. Particular cases of those arise in studying boundary problems for systems mentioned in the title. We provide a description of such subspaces and list their properties. A criterion is found that condition of semi-definiteness of sum of indefinite quadratic forms reduces to semi-definiteness of each of the summand forms, i.e it is separated. In the case when the forms depend on a parameter λ (e.g., a spectral parameter) within a domain $\Lambda \subset \mathbb{C}$, a condition is found under which separation of the semi-definiteness property at a single λ implies its separation for all λ.

Key words: maximal semi-definite subspace, maximal dissipative (accumulative) relation, idempotent.

Mathematics Subject Classification 2000: 34B07, 34G10, 46C20, 47A06, 47B50.

This work constitutes Part II of [32]. Notation, definitions, numeration of sections, statements, formulas etc., as well as the list of references, extend those of [32].

2. A Description and a Properties of Maximal Semi-definite Subspaces of a Special Form

Let $Q_{j}=Q_{j}^{*} \in B(\mathcal{H}), Q_{j}^{-1} \in B(\mathcal{H}), j=1,2 ; \operatorname{dim\mathcal {H}} \pm\left(Q_{1}\right)=\operatorname{dimH}_{ \pm}\left(Q_{2}\right)$, with $\mathcal{H}_{ \pm}\left(Q_{j}\right)$ being invariant subspaces for the operators Q_{j}, which correspond
to positive and negative parts of their spectra. Then it is well know that there exists $\Gamma_{j} \in B(\mathcal{H})$ such that

$$
\begin{equation*}
\Gamma_{j}^{-1} \in B(\mathcal{H}), \quad \Gamma_{j}^{*} Q_{j} \Gamma_{j}=J \tag{2.1}
\end{equation*}
$$

where J is the canonical symmetry, that is $J=J^{*}=J^{-1}$ (for example [27], one can choose Γ_{j} so that $J=\operatorname{sgn} Q_{1}$ or $J=\operatorname{sgn} Q_{2}$). Represent J in the form

$$
\begin{equation*}
J=P_{+}-P_{-} \tag{2.2}
\end{equation*}
$$

with $P_{ \pm}$being a pair of complementary orthogonal projections.
Introduce the notation

$$
\begin{equation*}
Q=\operatorname{diag}\left(Q_{1},-Q_{2}\right) \tag{2.3}
\end{equation*}
$$

Let $A_{j}, j=1,2$, be linear operators in \mathcal{H} (possibly unbounded and not densely defined) and suppose $\mathcal{D}_{A_{1}}=\mathcal{D}_{A_{2}}=\mathcal{D}$.

Consider the linear manifold

$$
\begin{equation*}
\mathcal{L}=\left\{A_{1} f \oplus A_{2} f \mid f \in \mathcal{D}\right\} \subset \mathcal{H}^{2} \tag{2.4}
\end{equation*}
$$

and the operators

$$
\begin{equation*}
S=P_{+} \Gamma_{1}^{-1} A_{1}+P_{-} \Gamma_{2}^{-1} A_{2}, \quad S_{1}=P_{+} \Gamma_{2}^{-1} A_{2}-P_{-} \Gamma_{1}^{-1} A_{1} \tag{2.5}
\end{equation*}
$$

Theorem 2.1. \mathcal{L} (2.4) is a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^{2} if and only if the following conditions hold:
$1^{o} . R(S)=\mathcal{H}\left(R\left(S_{1}\right)=\mathcal{H}\right)$.
2 $^{\circ}$. There exists a compression $K_{+}\left(K_{-}\right)$in \mathcal{H} such that

$$
\begin{equation*}
S_{1} f=K_{+} S f \quad\left(S f=K_{-} S_{1} f\right) \quad \forall f \in \mathcal{D} \tag{2.6}
\end{equation*}
$$

(Under $1^{o} K_{+}\left(K_{-}\right)$is unique).
Under (2.6), where linear operators $K_{ \pm}$are not necessary from $B(\mathcal{H})$, the operators A_{j} allow a parametrization as follows:

$$
\begin{array}{ll}
A_{1}=\Gamma_{1}\left(P_{+}-P_{-} K_{+}\right) S & \left(A_{1}=\Gamma_{1}\left(P_{+} K_{-}-P_{-}\right) S_{1}\right) \\
A_{2}=\Gamma_{2}\left(P_{-}+P_{+} K_{+}\right) S & \left(A_{2}=\Gamma_{2}\left(P_{+}+P_{-} K_{-}\right) S_{1}\right) \tag{2.8}
\end{array}
$$

Proof. For certainty, we expound a proof for the case of Q-nonnegative \mathcal{L}.
Necessity. Suppose $\mathcal{L}(2.4)$ is a maximal Q-nonnegative subspace. Since

$$
\begin{equation*}
\mathbb{U}^{*} J_{2} \mathbb{U}=\tilde{J}_{2} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbb{U}=\left(\begin{array}{cc}
P_{+} & -P_{-} \\
P_{-} & P_{+}
\end{array}\right)=\mathbb{U}^{*-1}, \tag{2.10}\\
J_{2}=\operatorname{diag}(J,-J), \tilde{J}_{2}=\operatorname{diag}(I,-I), \tag{2.11}
\end{gather*}
$$

the subspace

$$
\begin{equation*}
\tilde{\mathcal{L}}=\mathbb{U}^{*} \Gamma^{-1} \mathcal{L}=\left\{S f \oplus S_{1} f \mid f \in \mathcal{D}\right\} \tag{2.12}
\end{equation*}
$$

with

$$
\begin{equation*}
\Gamma=\operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}\right) \tag{2.13}
\end{equation*}
$$

is maximal \tilde{J}_{2}-nonnegative. If so (see [24, p. 100], [25, Ch. I, §8]), there exists a compression K_{+}in \mathcal{H} such that

$$
\begin{equation*}
\tilde{\mathcal{L}}=\left\{g \oplus K_{+} g \mid g \in \mathcal{H}\right\} \tag{2.14}
\end{equation*}
$$

Compare (2.12), (2.14) to see that 1^{o} and 2^{o} hold.
Sufficiency. Suppose 1° and 2° hold. Multiply from the left both parts of the initial formulas in $(2.5),(2.6)$ by P_{+}and P_{-}respectively, and then sum up the resulting equalities to get the initial equality in (2.7). The initial equality from (2.8) can be deduced in a similar way.

With the notation

$$
\begin{equation*}
U_{j}[f]=\left(Q_{j} A_{j} f, A_{j} f\right), \quad f \in \mathcal{D} \tag{2.15}
\end{equation*}
$$

apply $(2.1),(2.2),(2.7),(2.8)$ to deduce that

$$
\begin{equation*}
U_{1}[f]-U_{2}[f]=\|S f\|^{2}-\left\|K_{+} S f\right\| \geq 0 \tag{2.16}
\end{equation*}
$$

since K_{+}is a compression. Thus $\mathcal{L}(2.4)$ is Q-nonnegative. Prove its maximality. For that, as one can see from [23], [25, p. 38], in view of (2.1), (2.2), it suffices to verify that

$$
\begin{equation*}
\mathbb{P}_{+} \mathcal{L}=\mathbb{P}_{+} \mathcal{H}^{2} \tag{2.17}
\end{equation*}
$$

where

$$
\mathbb{P}_{+}=\Gamma\left(\begin{array}{cc}
P_{+} & 0 \tag{2.18}\\
0 & P_{-}
\end{array}\right) \Gamma^{-1}
$$

Apply (2.18), (2.13), (2.7), (2.8), together with the fact that $R(S)=\mathcal{H}$, to deduce that

$$
\begin{aligned}
\mathbb{P}_{+} \mathcal{L} & =\mathbb{P}_{+}\left\{A_{1} f \oplus A_{2} f \mid f \in \mathcal{D}\right\}=\Gamma\left\{P_{+} S f \oplus P_{-} S f \mid f \in \mathcal{D}\right\} \\
& =\Gamma\left\{P_{+} g \oplus P_{-} g \mid g \in \mathcal{H}\right\}=\Gamma\left\{P_{+} g \oplus P_{-} h \mid g, h \in \mathcal{H}\right\}=\mathbb{P} \mathcal{H}^{2}
\end{aligned}
$$

Thus (2.17), along with Th. 2.1, is proved.

Remark 2.1. Condition 1° in Th. 2.1 in the case $\operatorname{dim\mathcal {H}}=\infty$ could be replaced in general neither by

$$
\begin{equation*}
\exists \alpha>0: \forall f \in D \quad\|S f\| \geq \alpha\|f\| \quad\left(\left\|S_{1} f\right\| \geq \alpha\|f\|\right) \tag{2.19}
\end{equation*}
$$

nor by

$$
\begin{equation*}
\exists \beta>0: \forall f \in D \quad\left\|A_{1} f\right\|+\left\|A_{2} f\right\| \geq \beta\|f\| .^{\star} \tag{2.20}
\end{equation*}
$$

Proof. Let $\mathcal{H}=l^{2}$. Set up

$$
A_{1}=\Gamma_{1} P_{+} U, A_{2}=\Gamma_{2} P_{-} U \quad\left(A_{1}=-\Gamma_{1} P_{-} U, A_{2}=\Gamma_{2} P_{+} U\right)
$$

with U being the one-sided shift in l^{2} [28]. Then $S=U, S_{1}=0\left(S_{1}=U, S=0\right)$, hence condition 2^{o} in Th. 2.1 holds with the compression $K_{+}=0\left(K_{-}=0\right)$. Therefore, in view of (2.16) (an analog of (2.16) for equality $S=K_{-} S_{1}$), $\mathcal{L}(2.4)$ is Q-nonnegative (Q-nonpositive). On the other hand, $R(S) \neq \mathcal{H}\left(R\left(S_{1}\right) \neq \mathcal{H}\right)$, although (2.19), (2.20) hold. The Remark 2.1 is proved.

Theorem 2.1 implies
Corollary 2.1. Let the linear manifold \mathcal{L} and the operators S, S_{1} be given by (2.4), (2.5), and suppose the following two conditions are satisfied:

1) \mathcal{L} is Q-nonnegative (Q-nonpositive).
2) $S^{-1} \in B(\mathcal{H})\left(S_{1}^{-1} \in B(\mathcal{H})\right)$.

Then \mathcal{L} is a maximal Q-nonnegative (respectively, Q-nonpositive) subspace.
Proof is expounded here, e.g., for the Q-nonnegative case. Verify that 1), 2) imply the Conditions $1^{o}, 2^{o}$ of Th. 2.1. 2) implies 1^{o} together with (2.6) in which $K_{+}=S_{1} S^{-1}$. Then with this K_{+}the representations (2.7), (2.8) are valid, hence also equality (2.16). On the other hand, 1) implies inequality (2.16), whence K_{+}is a compression. The Corollary 2.1 is proved.

Remark 2.2. The transformation

$$
\left(\begin{array}{cc}
i I & I \\
I & i I
\end{array}\right) \mathbb{U}^{*} \Gamma^{-1} \mathcal{L}
$$

with \mathbb{U}, Γ as in (2.10), (2.13), reduces the maximal Q-nonnegative (Q-nonpositive) subspace \mathcal{L} (2.4) to a maximal accumulative (dissipative) relation in \mathcal{H}. Its Cayley transform V, relates to the compressions $K_{ \pm}$from Th. 2.1 as follows: $V= \pm i K_{ \pm}$.

Proof follows from the proof of Th. 2.1 and [22] (see also [2]).

[^0]Remark 2.3. (cf. [24, 25]). The formulae

$$
\begin{align*}
\mathcal{L} & =\left\{\Gamma_{1}\left(P_{+}-P_{-} K_{+}\right) h \oplus \Gamma_{2}\left(P_{-}+P_{+} K_{+}\right) h \mid h \in \mathcal{H}\right\} \\
(\mathcal{L} & \left.=\left\{\Gamma_{1}\left(P_{+} K_{-}-P_{-}\right) h \oplus \Gamma_{2}\left(P_{+}+P_{-} K_{-}\right) h \mid h \in \mathcal{H}\right\}\right) \tag{2.21}
\end{align*}
$$

establish a one-to-one correspondence between compressions $K_{+}\left(K_{-}\right)$in \mathcal{H} and maximal Q-nonnegative (Q-nonpositive) subspaces \mathcal{L} in \mathcal{H}^{2}. (In the case \mathcal{L} being of the form (2.4), the compressions $K_{+}\left(K_{-}\right)$in (2.7), (2.8) coincide to those in (2.21)). Besides that:

1) \mathcal{L} (2.21) is maximal Q-neutral subspace ${ }^{\star}$ if and only if $K_{+}\left(K_{-}\right)$is an isometry in \mathcal{H}.
2) \mathcal{L} (2.21) is hypermaximal Q-neutral subspace if and only if $K_{+}\left(K_{-}\right)$is a unitary in \mathcal{H}.

Proof is expounded here for certainty in the Q-nonnegative case. If \mathcal{L} is of the form (2.21) with K_{+}being a compression, then this \mathcal{L} satisfies the assumptions of Th. 2.1 since with this \mathcal{L} one has $S=I, S_{1}=K_{+} S$. Thus by Th. $2.1 \mathcal{L}$ is a maximal Q-nonnegative subspace.

Conversely, let \mathcal{L} be a maximal Q-nonnegative subspace. Then one can use the idea of the proof of necessity in Th. 2.1 to deduce that $\mathcal{L}=\Gamma \mathbb{U} \tilde{\mathcal{L}}$ with $\Gamma, \mathbb{U}, \tilde{\mathcal{L}}$ as in (2.13), (2.10), (2.14), and additionally that in (2.14) K_{+}is a compression, which implies (2.21).

A classification of $\mathcal{L}(2.21)$ in terms of the properties of compressions $K_{ \pm}$ follows from (2.16) and [24, p. 100], [25, Ch. I, §4, 8]. Since the correspondence (2.21) is obviously on-to-one, the statement of the remark is proved.

The following theorem allows one to characterize a maximal Q-definite subspace in terms of a linear equation, which provides an analog of the existing characterization for Hermitian [33] (see also [3]) and maximal dissipative or accumulative [22], (see also [2]) relations.

Theorem 2.2. Suppose that the linear manifold $\mathcal{L}($ e.g. \mathcal{L} (2.4)) is a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^{2}. Then there exists a unique compression $K_{+}\left(K_{-}\right)$in \mathcal{H} such that

$$
\begin{equation*}
f \oplus g \in \mathcal{L} \quad \Leftrightarrow \quad B_{1} f-B_{2} g=0 \tag{2.22}
\end{equation*}
$$

where

$$
\begin{array}{rll}
B_{1}=\left(K_{+} P_{+}-P_{-}\right) \Gamma_{1}^{*} Q_{1}, & B_{2}=\left(K_{+} P_{-}+P_{+}\right) \Gamma_{2}^{*} Q_{2} \\
\left(B_{1}=\left(P_{+}-K_{-} P_{-}\right) \Gamma_{1}^{*} Q_{1},\right. & & \left.B_{2}=\left(K_{-} P_{+}+P_{-}\right) \Gamma_{2}^{*} Q_{2}\right) \tag{2.23}
\end{array}
$$

[^1]and \mathcal{L} admits representation (2.21) with these compressions $K_{ \pm}$.
If in (2.23) $K_{ \pm}$are arbitrary compressions in \mathcal{H}, then
\[

$$
\begin{equation*}
\hat{\mathcal{L}}=\left\{B_{1}^{*} f \oplus B_{2}^{*} f \mid f \in \mathcal{H}\right\} \subset \mathcal{H}^{2} \tag{2.24}
\end{equation*}
$$

\]

is a maximal Q^{-1}-nonpositive (Q^{-1}-nonnegative) subspace in \mathcal{H}^{2} and (as one can see from (2.23)),

$$
\begin{equation*}
\left\|B_{1}^{*} f\right\|+\left\|B_{2}^{*} f\right\|>0, \quad 0 \neq f \in \mathcal{H} \tag{2.25}
\end{equation*}
$$

If \mathcal{L} is of the form (2.4) with $A_{j} \in B(\mathcal{H})$ and

$$
\begin{equation*}
\left\|A_{1} f\right\|+\left\|A_{2} f\right\|>0, \quad 0 \neq f \in \mathcal{H} \tag{2.26}
\end{equation*}
$$

then $S^{-1} \in B(\mathcal{H})$, $\left(S_{1}^{-1} \in B(\mathcal{H})\right)$, where S, S_{1} are as in (2.5), hence by (2.6) one has $K_{+}=S_{1} S^{-1}\left(K_{-}=S S_{1}^{-1}\right)$, i.e. B_{j} (2.23) admits an explicit expression in terms of A_{j}.

Conversely, suppose \mathcal{L} is given by (2.22), with $B_{j} \in B(\mathcal{H}), j=1,2$, and $\hat{\mathcal{L}}$ (2.24) is a maximal Q^{-1}-nonpositive (Q^{-1}-nonnegative) subspace in \mathcal{H}^{2}. Then \mathcal{L} is a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^{2} (hence admits representation (2.21)). Furthermore, if (2.25) holds, then the compressions $K_{ \pm}$ in (2.21) admit explicit expression in terms of B_{j}, specifically $K_{+}=S_{1}^{*-1} S^{*}$ $\left(K_{-}=S^{*-1} S_{1}^{*}\right)$ with S, S_{1} being given by (2.5), where $A_{1}=Q^{-1} B_{1}^{*}, A_{2}=Q_{2}^{-1} B_{2}^{*}$ and $S_{1}^{-1} \in B(\mathcal{H})\left(S^{-1} \in B(\mathcal{H})\right)$.

Proof is expounded here for certainty in the Q-nonnegative case. Let \mathcal{L} be a maximal Q-nonnegative subspace. Then by Remark 2.3 there exists a unique compression K_{+}, which makes valid (2.21), an equivalent of the initial equality in (2.12) with $\tilde{\mathcal{L}}(2.14)$. This implies by a virtue of [25, p. 73] that

$$
\mathcal{L}^{[Q]}=Q^{-1} \hat{\mathcal{L}}
$$

with $\hat{\mathcal{L}}$ being as in (2.24), (2.23); $\mathcal{L}^{[A]}$ stands here for A-orthogonal complement in \mathcal{H}^{2}. Therefore

$$
f \oplus g \in \mathcal{L} \Leftrightarrow\left(Q_{1} f, Q_{1}^{-1} B_{1}^{*} h\right)-\left(Q_{2} g, Q_{2}^{-1} B_{2}^{*} h\right)=0 \forall h \in \mathcal{H}
$$

which implies (2.22), (2.23). Furthermore, $Q^{-1} \hat{\mathcal{L}}$ is of the form (2.21) with $K_{-}=$ K_{+}^{*}, hence $\hat{\mathcal{L}}(2.24),(2.23)$ is a maximal Q^{-1}-nonpositive subspace by Remark 2.3.

If \mathcal{L} (2.4) with $A_{j} \in B(\mathcal{H})$ being a maximal Q-nonnegative subspace, then $R(S)=\mathcal{H}$ by Th. 2.1. Besides that, $\operatorname{Ker} S=\{0\}$ since if $S f=0$ for some nonzero $f \in \mathcal{H}$, then by condition (2.6) of Th. $2.1 S_{1} f=0$ implies $A_{1} f=A_{2} f=0$, which contradicts (2.26). Thus we have $S^{-1} \in B(\mathcal{H})$ by the Banach theorem.

Prove the converse. By our assumption, $Q^{-1} \hat{\mathcal{L}}$ is a maximal Q-nonpositive subspace. An application of Th. 2.1 provides the existence of a compression K_{-} such that

$$
Q_{1}^{-1} B_{1}^{*}=\Gamma_{1}\left(P_{+} K_{-}-P_{-}\right) S_{1}, \quad Q_{2}^{-1} B_{2}^{*}=\Gamma_{2}\left(P_{+}+P_{-} K_{-}\right) S_{1}
$$

where S_{1} is given by (2.5) with A_{j} being replaced by $Q_{j}^{-1} B_{j}^{*}$. Note that by a virtue of 1° of Th. 2.1 one has $\operatorname{Ker} S_{1}^{*}=\{0\}$, which yields

$$
B_{1} f-B_{2} g=0 \Leftrightarrow\left(K_{-}^{*} P_{+}-P_{-}\right) \Gamma_{1}^{*} Q_{1} f-\left(P_{+}+K_{-}^{*} P_{-}\right) \Gamma_{2} Q_{2} g=0
$$

Therefore $\mathcal{L}=\left(Q^{-1} \hat{\mathcal{L}}\right)^{[Q]}$, hence $[25$, p. 73] \mathcal{L} is a maximal Q-nonnegative subspace. An argument similar to that proving the direct statement demonstrates that for \mathcal{L} in (2.21) operator $K_{+}=K_{-}^{*}$, which allows to one deduce the rest of statements in a similar way. The theorem is proved.

Lemma 2.1. (cf. [24, 25]). Let $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$; in (2.1) one has

$$
J=\left(\begin{array}{cc}
I_{1} & 0 \tag{2.27}\\
0 & -I_{2}
\end{array}\right)
$$

with I_{j} being the identity operators in $\mathcal{H}_{j}, j=1$,2. Then the formulae: $\mathcal{L}=A_{1} \mathcal{H}$ $\left(\mathcal{L}=A_{2} \mathcal{H}\right)$, where

$$
A_{1}=\Gamma_{1}\left(\begin{array}{cc}
I_{1} & 0 \tag{2.28}\\
K_{21} & 0
\end{array}\right), \quad A_{2}=\Gamma_{2}\left(\begin{array}{cc}
0 & K_{12} \\
0 & I_{2}
\end{array}\right)
$$

establish a one to one correspondence between compressions $K_{21} \in B\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ $\left(K_{12} \in B\left(\mathcal{H}_{2}, \mathcal{H}_{1}\right)\right)$ and maximal Q_{1}-nonnegative (Q_{2}-nonpositive) subspaces \mathcal{L} in \mathcal{H}. Besides that:

$$
f \in \mathcal{L} \quad \Leftrightarrow \quad\left(\begin{array}{cc}
0 & 0 \\
K_{21} & I_{2}
\end{array}\right) \Gamma_{1}^{*} Q_{1} f=0 \quad\left(\left(\begin{array}{cc}
I_{1} & K_{12} \\
0 & 0
\end{array}\right) \Gamma_{2}^{*} Q_{2} f=0\right)
$$

The Lemma 2.1 proves in the same way as (2.21), (2.22), (2.23) with using [24, 25].

Note that with $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{1}$ and

$$
Q_{1}=Q_{2}=\left(\begin{array}{cc}
0 & i I_{1} \\
-i I_{1} & 0
\end{array}\right)
$$

the maximal Q_{1}-nonnegative (Q_{1}-nonpositive) subspace in \mathcal{H} appears to be a maximal accumulative (dissipative) relation in \mathcal{H}_{1}, and, after a suitable change of notation, Lemma 2.1 provides a well known [22] (see also [2, 3]) description for them.

Lemma 2.2. Let $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ and the operator J in (2.1) is just (2.27). Then \mathcal{L} (2.4) together with the operators A_{1}, A_{2} as in (2.28) of Lemma 2.1 is a maximal Q-nonnegative subspace in \mathcal{H}^{2}.

Pr o of. For $\mathcal{L}(2.4),(2.28)$ one has $S=I, S_{1}=\left(\begin{array}{cc}0 & K_{12} \\ -K_{21} & 0\end{array}\right)$, so Lemma 2.2 is proved in view of Th. 2.1.

An analog for Lemma 2.2 is also valid for the Q-nonpositive case.
In addition to Th. 2.1, we have

Theorem 2.3. Let \mathcal{L} (2.4) be a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^{2} (that is, the assumptions 1^{o}, $\mathscr{2}^{\circ}$ of Th. 2.1 are satisfied), and suppose that $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ with the operator J in (2.1) being just (2.27). Then $(-1)^{j}\left(Q_{j} A_{j} f, A_{j} f\right) \leq 0\left((-1)^{j}\left(Q_{j} A_{j} f, A_{j} f\right) \geq 0\right)$ for $f \in D, j=1$, 2, if and only if the compressions in (2.7),(2.8) are of the form

$$
K_{+}=\left(\begin{array}{cc}
0 & K_{12}^{+} \tag{2.29}\\
K_{21}^{+} & 0
\end{array}\right), \quad\left(K_{-}=\left(\begin{array}{cc}
0 & K_{12}^{-} \\
K_{21}^{-} & 0
\end{array}\right)\right)
$$

with $K_{i j}^{ \pm} \in B\left(\mathcal{H}_{j}\right.$, being obviously compressions.
Proof is to be expounded here for certainty in the Q-nonnegative case. Necessity. Let $(-1)^{j}\left(Q A_{j} f, A_{j} f\right) \leq 0$ for $f \in D, j=1,2$. Then since $\mathcal{L}(2.4)$ is a maximal Q-nonnegative subspace, the linear manifolds $\left\{A_{1} f \mid f \in D\right\}$ and $\left\{A_{2} f \mid f \in D\right\}$ are, respectively, maximal Q_{1}-nonnegative and Q_{2}-nonpositive subspaces in \mathcal{H}. Thus by Th. 2.1 and Lemma 2.2 one has $\forall f \in D \exists h \in \mathcal{H}$:

$$
\begin{align*}
& \left(P_{+}-P_{-} K_{+}\right) S f=\left(\begin{array}{cc}
I_{1} & 0 \\
K_{21} & 0
\end{array}\right) h \tag{2.30}\\
& \left(P_{-}+P_{+} K_{+}\right) S f=\left(\begin{array}{cc}
0 & K_{12} \\
0 & I_{2}
\end{array}\right) h, \tag{2.31}
\end{align*}
$$

where $S f=g_{1} \oplus g_{2}, h=h_{1} \oplus h_{2} ; g_{j}, h_{j} \in \mathcal{H}_{j}$, and the compression

$$
K_{+}=\left(\begin{array}{ll}
K_{11}^{+} & K_{12}^{+} \tag{2.32}\\
K_{21}^{+} & K_{22}^{+}
\end{array}\right)
$$

with $K_{i j}^{+} \in B\left(\mathcal{H}_{j}, \mathcal{H}_{i}\right)$.
Multiply (2.30) from left by P_{+}to get, in view of (2.27),

$$
\begin{equation*}
g_{1}=h_{1} \tag{2.33}
\end{equation*}
$$

[^2]In a similar way, multiply (2.30) from left by \mathcal{P}_{-}to obtain in view (2.32)

$$
\begin{equation*}
-K_{21}^{+} g_{1}-K_{22}^{+} g_{2}=K_{21} h_{1} . \tag{2.34}
\end{equation*}
$$

Since $R(S)=\mathcal{H}$ by Th. 2.1, the vectors $g_{j} \in \mathcal{H}_{j}$ in (2.33), (2.34) are arbitrary. Thus it follows from (2.33), (2.34) that $K_{21}^{+}=-K_{21}, K_{22}^{+}=0$. Deduce similarly from (2.31) that $K_{12}^{+}=K_{12}, K_{11}^{+}=0$, which proves the necessity.

Sufficiency. Since $\mathcal{L}(2.4)$ is a maximal Q-nonnegative subspace in \mathcal{H}^{2}, it follows from Th. 2.1 together with (2.7), (2.8), (2.27), (2.29), that

$$
A_{1}=\Gamma_{1}\left(\begin{array}{cc}
I_{1} & 0 \\
-K_{21}^{+} & 0
\end{array}\right) S, \quad A_{2}=\Gamma_{2}\left(\begin{array}{cc}
0 & K_{12}^{+} \\
0 & I_{2}
\end{array}\right) S .
$$

So by Lem. 2.1 sufficiency, along with theorem 2.3 is proved.
Consider examples (Th. 2.4-2.7) of Q-semi-definite subspaces which arise in investigation of boundary problems for the equation (0.1).

Let P be an orthogonal projection in \mathcal{H} (in particular P can be an orthogonal projection onto N^{\perp} (see [32])), and let $M_{ \pm i}$ be a linear operators (not necessary bounded) in \mathcal{H} with the property

$$
\begin{equation*}
M_{ \pm i}=P M_{ \pm i} P \tag{2.35}
\end{equation*}
$$

(hence also $P D_{M_{ \pm i}} \subseteq D_{M_{ \pm i}},(I-P) \mathcal{H} \subseteq D_{M_{ \pm i}}$.
Let $G=G^{*} \in B(\mathcal{H}), G^{-1} \in B(\mathcal{H})$ (in particular G can be equal to $Q(c)$ (see [32])).

Represent $M_{ \pm i}$ in the form

$$
\begin{equation*}
M_{ \pm i}=\left(\mathcal{P}_{ \pm i}-\frac{1}{2} I\right)(i G)^{-1} \tag{2.36}
\end{equation*}
$$

Consider linear manifolds in \mathcal{H}^{2} :

$$
\begin{gather*}
L_{ \pm i}= \\
\left\{\left[\left(\mathcal{P}_{ \pm i}-I\right)(i G)^{-1} P+(I-P)\right] f \oplus\left[\mathcal{P}_{ \pm i}(i G)^{-1} P+(I-P)\right] f \mid f \in D_{M_{ \pm i}}\right\}^{\star} \tag{2.37}
\end{gather*}
$$

and introduce the notation

$$
G_{2}=\operatorname{diag}(G,-G) .
$$

[^3]Lemma 2.3. If $\bar{D}_{M_{i}}=\mathcal{H}$ and the operators $M_{ \pm i}$ are related as follows

$$
\begin{equation*}
M_{-i}=M_{i}^{*},{ }^{\star} \tag{2.38}
\end{equation*}
$$

then the linear manifolds L_{i} and L_{-i} are $G_{2 \text {-orthogonal. }}$
Proof reduces to a direct computation which uses that, in view of (2.38),

$$
\begin{equation*}
\mathcal{P}_{-i}=I-G^{-1} \mathcal{P}_{i}^{*} G \tag{2.39}
\end{equation*}
$$

Lemma 2.4. The linear manifolds $L_{ \pm i}$ are $\pm G_{2}$-nonnegative if and only if $\pm \operatorname{Im}\left(M_{ \pm i} f, f\right) \geq 0$ for all $f \in D_{M_{ \pm i}}$.

Proof reduces to a direct computation.

Theorem 2.4. The linear manifolds $L_{ \pm i}$ (2.37) are maximal $\pm G_{2}$-nonnegative subspaces in \mathcal{H}^{2} if and only if $\pm M_{ \pm i}$ are maximal dissipative operators in \mathcal{H}.

Proof is expounded here for certainty in the case of L_{i}. Necessity. Suppose L_{i} is a maximal G_{2}-nonnegative subspace. Hence operator M_{i} is closed.

Prove that $\bar{D}_{M_{i}}=\mathcal{H}$. Clearly \mathcal{H} can be represented in the form $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2}$ so that there exists $\Gamma \in B(\mathcal{H})$ with $\Gamma^{-1} \in B(\mathcal{H}), \Gamma^{*} G \Gamma=J$ (2.27). For L_{i} (2.37) compute the operator $S(2.5)$ with $\Gamma_{1}=\Gamma_{2}=\Gamma$. One has:

$$
\begin{equation*}
\Gamma S=M_{i}+\frac{i}{2} \Gamma \Gamma^{*} P+I-P \tag{2.40}
\end{equation*}
$$

Suppose there exists a nonzero $f_{0} \in D_{M_{i}}^{\perp}$. Since $R(S)=\mathcal{H}$ by Th. 2.1, there exists $g_{0} \in D_{M_{i}}$ such that $\Gamma S g_{0}=f_{0}$. Then it follows from (2.40), (2.35) that

$$
0=\left(f_{0}, P g_{0}\right)=\left(M_{i} P g_{0}, P g_{0}\right)+\frac{i}{2}\left\|\Gamma^{*} P g_{0}\right\|^{2}
$$

whence

$$
\begin{equation*}
0=\operatorname{Im}\left(M_{i} P g_{0}, P g_{0}\right)+\frac{1}{2}\left\|\Gamma^{*} P g_{0}\right\|^{2} \tag{2.41}
\end{equation*}
$$

It follows from (2.41) that $P g_{0}=0$, since the first term in (2.41) is nonnegative by Lemma 2.4. On the other hand, (2.40), (2.35) imply that $0=\left(f_{0},(I-P) g_{0}\right)=$ $\left\|(I-P) g_{0}\right\|^{2}$, hence $g_{0}=0 \Rightarrow \bar{D}_{M_{i}}=\mathcal{H}$. Thus M_{i} is closed dissipative operator (see [34]) by Lemma 2.4.

Prove that $\operatorname{Im}\left(M_{i}^{*} f, f\right) \leq 0$ for $f \in D_{M_{i}^{*}}$. Since L_{i} is a maximal $G_{2^{-}}$ nonnegative subspace, it follows from Lemma 2.3 that $L_{-i}(2.37)$, (2.38) is a G_{2}-nonpositive linear manifold in view of [25, p. 73]. Thus Lemma 2.4 together

[^4]with (2.38) implies $\operatorname{Im}\left(M_{i}^{*} f, f\right) \leq 0$ for $f \in D_{M_{i}^{*}}$, which proves necessity in view of [34, p. 109].

Sufficiency. Suppose that M_{i} (2.35) is maximal dissipative. Hence the linear manifold $L_{i}(2.37)$ is G_{2}-nonnegative by Lemma 2.4.

Prove that for this manifold the operator S given by (2.5) is such that $S^{-1} \in$ $B(\mathcal{H})$ where $\mathcal{L}(2.4)=L_{i}, \Gamma_{j}=\Gamma$.

Prove that $0 \neq \sigma_{p}(S) \cup \sigma_{c}(S)$. If not, then there exists a sequence $\left\{f_{n}\right\}$ such that $f_{n} \in D\left(M_{i}\right),\left\|f_{n}\right\|=1$, and $\Gamma S f_{n} \rightarrow 0$, whence in view of (2.40) one has

$$
\begin{equation*}
\operatorname{Im}\left(M_{i} P f_{n}, P f_{n}\right)+\frac{1}{2}\left\|\Gamma^{*} P f_{n}\right\|^{2} \rightarrow 0 \tag{2.42}
\end{equation*}
$$

Since the first term in (2.42) is nonnegative due to dissipativity of M_{i}, it follows from (2.42) that $P f_{n} \rightarrow 0$. On the other hand, (2.40), (2.35) imply that $\left\|(I-P) f_{n}\right\|^{2}=\left(\Gamma S f_{n},(I-P) f_{n}\right) \rightarrow 0$, hence $f_{n} \rightarrow 0$. The contradiction we get proves that $0 \neq \sigma_{p}(S) \cup \sigma_{c}(S)$.

Prove that $0 \notin \sigma_{r}(S)$. If not, there exists a nonzero $f \in D_{M_{i}^{*}}$ such that $(\Gamma S)^{*} f=0$, since $D_{(\Gamma S)^{*}}=D_{M_{i}^{*}}$ in view of (2.40). Then by a virtue of (2.40), (2.35) one has

$$
\begin{equation*}
P M_{i}^{*} P f-\frac{i}{2} P \Gamma \Gamma^{*} f+(I-P) f=0 \tag{2.43}
\end{equation*}
$$

whence $(I-P) f=0$. Thus by (2.43) one has

$$
\begin{equation*}
\operatorname{Im}\left(M_{i}^{*} P f, P f\right)-\frac{1}{2}\left\|\Gamma^{*} P f\right\|=0 \tag{2.44}
\end{equation*}
$$

It follows from maximal dissipativity of M_{i} that the first term in (2.44) is nonpositive [34, p. 109]. Thus by (2.44) $P f=0$, hence $f=0$. It follows that $0 \notin \sigma_{r}(S)$, therefore $S^{-1} \in B(\mathcal{H})$, which completes the proof in view of Cor. 2.1.

For $P=I, M_{ \pm i} \in B(\mathcal{H})$ Th. 2.4 is contained in [1].

Corollary 2.2. If $\pm M_{i}$ are maximal dissipative operators in \mathcal{H}, then $L_{ \pm i}=$ $\left\{\left[\left(\mathcal{P}_{ \pm i}-I\right) G^{-1} f+(I-P) g\right] \oplus\left[\mathcal{P}_{ \pm i} G^{-1} f+(I-P) g\right] \mid f \in D_{M_{ \pm i}}, g \in \mathcal{H}\right\}$.

Proof follows from the fact that for linear manifolds in the right hand side the analog of Lemma 2.4 holds.*

Lemma 2.5. Let $\bar{D}_{M_{i}}=\mathcal{H}$, the operators $M_{ \pm i}$ be related by (2.38), and the operators $X_{ \pm i j} \in B(\mathcal{H}), j=1,2$, be related by

$$
\begin{equation*}
X_{-i 1}^{*} Q_{1} X_{i 1}=G=X_{-i 2}^{*} Q_{2} X_{i 2} \tag{2.45}
\end{equation*}
$$

[^5]Then the linear manifolds

$$
\begin{equation*}
\mathcal{L}_{ \pm i}=\operatorname{diag}\left(X_{ \pm i 1}, X_{ \pm i 2}\right) L_{ \pm i} \tag{2.46}
\end{equation*}
$$

are Q-orthogonal, with $L_{ \pm i}$ being as in (2.37).
Proof follows from (2.45) and Lemma 2.3.
Lemma 2.6. Suppose $\tilde{X}_{ \pm i j}, \tilde{X}_{ \pm i j}^{-1} \in B(\mathcal{H}), j=1,2$, and the following three conditions are satisfied:
1^{o}. $\tilde{L}_{ \pm i}$ are a maximal $\pm G_{2}$-nonnegative subspaces in \mathcal{H}^{2}.
2̈ $^{\circ}$. The subspaces

$$
\tilde{\mathcal{L}}_{ \pm i}=\operatorname{diag}\left(\tilde{X}_{ \pm i 1}, \tilde{X}_{ \pm i 2}\right) \tilde{L}_{ \pm i}
$$

are $\pm Q$-nonnegative.
3° 。

$$
\begin{equation*}
\pm \tilde{X}_{ \pm i 1}^{*} Q_{1} \tilde{X}_{ \pm i 1} \leq \pm G \leq \pm \tilde{X}_{ \pm i 2}^{*} Q_{2} \tilde{X}_{ \pm i 2} \tag{2.47}
\end{equation*}
$$

Then $\tilde{\mathcal{L}}_{ \pm i}$ are a maximal $\pm Q$-nonnegative subspaces in \mathcal{H}^{2}.
Proof is presented here for certainty in the case of $\tilde{\mathcal{L}}_{i}$. Suppose that $\tilde{\mathcal{L}}_{i}$ is not maximal, that is \mathcal{H}^{2} contains a Q-nonnegative subspace $T \supset \tilde{\mathcal{L}}_{i}$. Then the subspace $T_{1}=\operatorname{diag}\left(\tilde{X}_{i 1}^{-1}, \tilde{X}_{i 2}^{-1}\right) T$ contains \tilde{L}_{i}. By a virtue of (2.47) for all $f_{1} \oplus f_{2} \in T$, one has

$$
\left(G \tilde{X}_{i 1}^{-1} f_{1}, \tilde{X}_{i 1}^{-1} f_{1}\right)-\left(G \tilde{X}_{i 2}^{-1} f_{1}, \tilde{X}_{i 2}^{-1} f_{2}\right) \geq\left(Q_{1} f_{1}, f_{1}\right)-\left(Q_{2} f_{2}, f_{2}\right) \geq 0
$$

since T is Q-nonnegative. Thus T_{1} is a Q-nonnegative subspace, which contradicts maximality of \tilde{L}_{i}. The lemma is proved.

Theorem 2.5. Suppose $L_{i}\left(L_{-i}\right)$ (2.37) is a maximal G_{2}-nonnegative ($G_{2^{-}}$ nonpositive) subspace in \mathcal{H}^{2}, and (2.38) holds. Let for $X_{ \pm i j} \in B(\mathcal{H}), j=1,2$, (2.45) holds.

Then $\mathcal{L}_{-i}\left(\mathcal{L}_{i}\right)(2.46)$ is Q-nonpositive (Q-nonnegative) manifold in \mathcal{H}^{2}.
Additionally, if $X_{i j}^{-1} \in B(\mathcal{H}), X_{-i j}^{-1} \in B(\mathcal{H}), j=1,2$, (2.47) for $\tilde{X}_{ \pm i j}=X_{ \pm i j}$ holds with $+(-)$, and the spectrum of either of the operators $Y_{i 1}, Y_{i 2}$ does not cover the unit circle, where

$$
\begin{equation*}
\Gamma_{j} Y_{ \pm i j}=X_{ \pm i j} ; \quad \Gamma_{j} \in B(\mathcal{H}), \Gamma_{j}^{-1} \in B(\mathcal{H}), \Gamma_{j}^{*} Q_{j} \Gamma_{j}=G, j=1,2 \tag{2.48}
\end{equation*}
$$

(hence in view of (2.45) the spectrum of either of the operators $Y_{-i 1}, Y_{-i 2}$ does not cover the unit circle).

Then $\mathcal{L}_{-i}\left(\mathcal{L}_{i}\right)(2.46)$ is a maximal Q-nonpositive (Q-nonnegative) subspace in \mathcal{H}^{2}.

Proof of Q-semidefiniteness for $\mathcal{L}_{-i}\left(\mathcal{L}_{i}\right)$ follows from [25, p. 73] in view of Lemma 2.5 and Th. 2.4.

The subsequent argument is expounded here for certainty in the case when condition (2.47) (with +) for $\tilde{X}_{+i j}=X_{i j}$ holds. In view of (2.48) we have

$$
Y_{i 1}^{*} G Y_{i 1} \leq G \leq Y_{i 2}^{*} G Y_{i 2}
$$

Thus by (2.45) one has

$$
Y_{-i 1} G^{-1} Y_{-i 1}^{*} \geq G^{-1} \geq Y_{-i 2} G^{-1} Y_{-i 2}^{*}
$$

whence in view of $[24$, p. 96], we deduce that

$$
Y_{-i 1}^{*} G Y_{-i 1} \geq G \geq Y_{-i 2}^{*} G Y_{-i 2}
$$

since the spectrum of either of the operators $Y_{-i 1}^{*}, Y_{-i 2}^{*}$ does not cover the unit circle.

Hence by (2.48) the condition (2.47) (with -) for $\tilde{X}_{-i j}=X_{-i j}$ holds. Finally, maximality of L_{i} implies maximality for L_{-i} in view of (2.38), Th. 2.4, and [34, p. 109]. Thus \mathcal{L}_{-i} is a maximal Q-nonpositive subspace by Lemma 2.6. The theorem is proved.

The next theorem allows one to use Remark 1.1 for producing c.o. of a boundary problem for the equation (0.1) with a non-separated boundary condition, whose special case is the periodic boundary condition.

Theorem 2.6. Suppose:
1° 。

$$
\begin{equation*}
\Gamma, \Gamma^{-1} \in B(\mathcal{H}), \quad Q_{2}=\Gamma^{*} Q_{1} \Gamma \tag{2.49}
\end{equation*}
$$

2°.

$$
\begin{equation*}
\mathbf{U} \in B(\mathcal{H}), \mathbf{U}^{*} Q_{1} \mathbf{U}-Q_{1} \leq 0(\geq 0) \tag{2.50}
\end{equation*}
$$

3°. The spectrum of \mathbf{U} does not cover the unit circle.
Then \mathcal{L} (2.4) with

$$
\begin{equation*}
A_{1}=I, \quad A_{2}=\Gamma^{-1} \mathbf{U} \tag{2.51}
\end{equation*}
$$

is a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^{2}.
Proof is expounded here for certainty in the Q-nonnegative case. It follows from (2.49), (2.50) that $\mathcal{L}(2.4),(2.51)$ is Q-nonnegative.

Since by (2.1), (2.49)

$$
\begin{equation*}
\Gamma_{2}^{*} \Gamma^{*} Q_{1} \Gamma \Gamma_{2}=J, \tag{2.52}
\end{equation*}
$$

one can set up in (2.1) $\Gamma_{1}=\Gamma \Gamma_{2} \stackrel{\text { def }}{=} \Gamma_{3}$. Once this is done, the operator S for \mathcal{L} (2.4), (2.51) acquires the form

$$
\begin{equation*}
S=P_{+} \Gamma_{3}^{-1}+P_{-} \Gamma_{3}^{-1} \mathbf{U} \tag{2.53}
\end{equation*}
$$

Prove that $S^{-1} \in B(\mathcal{H})$. Start with demonstrating that $0 \notin \sigma_{p}(S) \cup \sigma_{c}(S)$. If not, there exists a sequence $\left\{f_{n}\right\}$ such that

$$
\begin{equation*}
f_{n} \in \mathcal{H}, \quad\left\|f_{n}\right\|=1, \quad S f_{n} \rightarrow 0 \tag{2.54}
\end{equation*}
$$

It follows from (2.53), (2.54) that

$$
\begin{equation*}
P_{-} \Gamma_{3}^{-1} f_{n}-\Gamma_{3}^{-1} f_{n} \rightarrow 0, \quad P_{+} \Gamma_{3}^{-1} \mathbf{U} f_{n}-\Gamma_{3}^{-1} \mathbf{U} f_{n} \rightarrow 0 \tag{2.55}
\end{equation*}
$$

whence

$$
\begin{gather*}
\left\{\left[\left(J \Gamma_{3}^{-1} \mathbf{U} f_{n}, \Gamma_{3}^{-1} \mathbf{U} f_{n}\right)-\left(J \Gamma_{3}^{-1} f_{n}, \Gamma_{3}^{-1} f_{n}\right)\right]\right. \\
\left.-\left[\left(J P_{+} \Gamma_{3}^{-1} \mathbf{U} f_{n}, P_{+} \Gamma_{3}^{-1} \mathbf{U} f_{n}\right)-\left(J P_{-} \Gamma_{3}^{-1} f_{n}, P_{-} \Gamma_{3}^{-1} f_{n}\right)\right]\right\} \rightarrow 0 \tag{2.56}
\end{gather*}
$$

On the other hand, by a virtue of (2.52), the first bracket in (2.56) is just $\left(\mathbf{U}^{*} Q_{1} \mathbf{U} f_{n}, f_{n}\right)-\left(Q_{1} f_{n}, f_{n}\right)$, hence nonpositive in view of (2.50). By (2.2), the second bracket in (2.56) equals

$$
\left\|P_{+} \Gamma_{3}^{-1} \mathbf{U} f_{n}\right\|^{2}+\left\|P_{-} \Gamma_{3}^{-1} f_{n}\right\|^{2}
$$

Thus we deduce from (2.56) that

$$
P_{+} \Gamma_{3}^{-1} \mathbf{U} f_{n} \rightarrow 0, \quad P_{-} \Gamma_{3}^{-1} f_{n} \rightarrow 0
$$

whence $f_{n} \rightarrow 0$ by (2.55). The contradiction we get proves that $0 \neq \sigma_{p}(S) \cup \sigma_{c}(S)$.
Prove that $0 \notin \sigma_{r}(S)$. If not, then for some nonzero $f \in \mathcal{H}$ one has

$$
\begin{equation*}
\mathbf{U}^{*} \Gamma_{3}^{*-1} P_{-} f=-\Gamma_{3}^{*-1} P_{+} f \tag{2.57}
\end{equation*}
$$

On the other hand, since the spectrum of \mathbf{U} does not cover the unit circle, it follows from [24, p. 96] that

$$
\begin{equation*}
\left(Q_{1}^{-1} \mathbf{U}^{*} \Gamma_{3}^{*-1} P_{-} f, \mathbf{U}^{*} \Gamma_{3}^{*-1} P_{-} f\right)+\left[-\left(Q_{1}^{-1} \Gamma_{3}^{*-1} P_{-} f, \Gamma_{3}^{*-1} P_{-} f\right)\right] \leq 0 \tag{2.58}
\end{equation*}
$$

Now by (2.57), (2.52), (2.2), the first term in (2.58) equals $\left\|P_{+} f\right\|$, while the second term by (2.52), (2.2) equals $\left\|P_{-} f\right\|^{2}$, whence $f=0$. Hence $0 \in \sigma_{r}(S)$, which finishes the proof in view of Cor. 2.1.

Remark 2.4. The proof show that condition 3° in the Th. 2.6 is unnecessary, when $Q_{j} \gg 0\left(Q_{j} \ll 0\right), j=1,2$, and when $Q_{j} \ll 0\left(Q_{j} \gg 0\right)$, $\mathbf{U}^{-1} \in B(\mathcal{H})$. If Q_{j} are indefinite or if $Q_{j} \ll 0\left(Q_{j} \gg 0\right)$ it is impossible in general to get rid of 3°.

In fact, if $Q_{1}=Q_{2}=W, \mathbf{U}=T$, where T, indefinite W see [24, p.67], then (2.50), (≥ 0) holds and hence the linear manifold (2.4), (2.51) is Q-nonnegative, but for it $\operatorname{Ker} S^{*} \neq\{0\}$. Hence $(2.4),(2.51)$ isn't maximal by Th. 2.1. If $\mathcal{H}=l^{2}$, $Q_{1}=Q_{2}=-I(I), \mathbf{U}$ is the one-side shift in $l^{2}[28]$, then (2.50) (with $\left.=0\right)$ holds and for (2.4), (2.51) $\operatorname{Ker} S^{*}\left(S_{1}^{*}\right) \neq\{0\}$. Hence (2.4), (2.51) isn't maximal by Th. 2.1.

Lemma 2.7. Let $A_{j}, \quad j=1,2$, be linear operators in $\mathcal{H}, D_{A_{j}}=D$, $(-1)^{j}\left(Q_{j} A_{j} f, A_{j} f\right) \leq 0$ (hence \mathcal{L} (2.4) is a Q-nonnegative manifold in \mathcal{H}^{2}), and suppose \mathcal{L} (2.4) is a maximal Q-nonnegative subspace in \mathcal{H}^{2} (hence $\mathcal{L}_{j}=\left\{A_{j} f \mid f \in\right.$ $\mathcal{D}\}$ are maximal $(-1)^{j} Q_{j}$-nonpositive subspaces in $\left.\mathcal{H}\right)$. Then

$$
\begin{equation*}
\mathcal{L}^{[Q]}=\mathcal{L}_{1}^{\left[Q_{1}\right]} \oplus \mathcal{L}_{2}^{\left[Q_{2}\right]} \tag{2.59}
\end{equation*}
$$

where $[A]$ stands for the A-orthogonal complement in the associated Hilbert subspace.

Proof. Since \mathcal{L} is a maximal Q-nonnegative subspace, one deduces by [25, p. 73] that $\mathcal{L}^{[Q]}$ is a maximal Q-nonpositive subspace:

$$
\begin{equation*}
\mathcal{L}^{[Q]}=\left(\mathcal{L}_{1} \oplus \mathcal{L}_{2}\right)^{[Q]} \supseteq \mathcal{L}_{1}^{\left[Q_{1}\right]} \oplus \mathcal{L}_{2}^{\left[Q_{2}\right]} \tag{2.60}
\end{equation*}
$$

with $\mathcal{L}_{j}^{\left[Q_{j}\right]}$ being maximal $(-1)^{j} Q_{j}$-nonnegative subspaces by [25, p. 73]. Thus by an analogue of Lemma 2.2 for the Q-nonpositive case, the subspace in the right hand side of the inclusion (2.60) is maximal Q-nonpositive. Hence the equality in (2.59), together with the Lemma, is proved.

The case $P=I$ in Th. 2.4 is supplemented by
Theorem 2.7. Let \mathcal{P} be linear operator in \mathcal{H}. Set

$$
\begin{equation*}
A_{1}=\mathcal{P}-I, \quad A_{2}=\mathcal{P} \tag{2.61}
\end{equation*}
$$

1o. Suppose \mathcal{L} (2.4), (2.61) is a maximal G_{2}-nonnegative subspace in \mathcal{H}^{2}, , hence, in particular,

$$
\begin{equation*}
\left(G A_{1} f, A_{1} f\right)-\left(G A_{2} f, A_{2} f\right) \geq 0, f \in D_{\mathcal{P}} \tag{2.62}
\end{equation*}
$$

Let inequality (2.62) is separated, i.e., is equivalent to the pair of inequalities being simultaneously satisfied:

$$
\begin{equation*}
(-1)^{j}\left(G A_{j} f, A_{j} f\right) \leq 0, \quad j=1,2 ; f \in D_{\mathcal{P}} \tag{2.63}
\end{equation*}
$$

[^6]Then

$$
\begin{equation*}
D_{\mathcal{P}^{2}}=D_{\mathcal{P}}, \quad \mathcal{P}^{2}=\mathcal{P} \tag{2.64}
\end{equation*}
$$

that is, \mathcal{P} is an idempotent.
2o. Conversely, let \mathcal{L} (2.4), (2.61) be G_{2}-nonnegative, that is, (2.62) holds, and let \mathcal{P} be an idempotent, i.e., (2.64) holds.

Then (2.62) is separated, that is, (2.63) holds.
Proof. 1^{o}. Lemmas $2.7,2.3$ imply

$$
\mathcal{L}_{1}^{[G]} \oplus \mathcal{L}_{2}^{[G]}=\mathcal{L}^{\left[G_{2}\right]} \supseteq\left\{-G^{-1} \mathcal{P}^{*} G g \oplus\left(I-G^{-1} \mathcal{P}^{*} G\right) g \mid g \in D_{\mathcal{P}^{*} G}\right\}
$$

It follows that

$$
\mathcal{L}_{1}^{[G]} \supseteq\left\{G^{-1} \mathcal{P}^{*} G g \mid g \in D_{\mathcal{P}^{*} G}\right\}
$$

hence one has

$$
\begin{equation*}
\left((\mathcal{P}-I) f, \mathcal{P}^{*} h\right)=0, \quad \forall f \in D_{\mathcal{P}}, h \in D_{\mathcal{P}^{*}} \tag{2.65}
\end{equation*}
$$

On the other hand, since the operator

$$
\begin{equation*}
M=\left(\mathcal{P}-\frac{1}{2} I\right)(i G)^{-1} \tag{2.66}
\end{equation*}
$$

is maximal dissipative by Th. 2.4, \mathcal{P} is densely defined, closed ${ }^{\star}$, hence [30, p. 335] \mathcal{P}^{*} is densely defined, and $\mathcal{P}^{* *}=\mathcal{P}$. Thus (2.65) means that $(\mathcal{P}-I) f \in D_{\mathcal{P}^{* *}}=$ $D_{\mathcal{P}}$ and

$$
\mathcal{P}(\mathcal{P}-I) f=0, \quad \forall f \in D_{\mathcal{P}}
$$

which proves (2.64).
2^{o}. Set up subsequently in (2.62), (2.61) $f=\mathcal{P} h, h \in D_{\mathcal{P}}$, and $f=(\mathcal{P}-I) h$, we obtain (2.63) in view of (2.64). The theorem is proved.

Replace G with $-G$ to see that an analogue for $T h .2 .7$ is valid for $G_{2^{-}}$ nonpositive $\mathcal{L}(2.4)$, (2.61).

For $\mathcal{P} \in B(\mathcal{H})$ Th. 2.7 is contained in [1].
Remark 2.5. There exists a maximal G_{2}-nonnegative subspace of the form \mathcal{L} (2.4), (2.61), with \mathcal{P} being an unbounded idempotent, defined densely in \mathcal{H}.

In fact, represent $M(\lambda)(1.104),(1.103)$, (1.102) in the form (1.20) and set $\mathcal{P}=\mathcal{P}(i)$. As the operator $M(\lambda)$ (1.104) is maximal dissipative if $\operatorname{Im} \lambda>0$, it follows from Th. 2.4 that \mathcal{P} is the desired idempotent.

Theorem2.7 implies

[^7]Corollary 2.3. Let for linear operators $\mathcal{A}_{1}, \mathcal{A}_{2}$ in \mathcal{H} the following conditions hold: 1) $D_{\mathcal{A}_{1}}=D_{\mathcal{A}_{2}}=\mathcal{D}$, 2) $\left(\mathcal{A}_{2}+\mathcal{A}_{1}\right)^{-1} \in B(\mathcal{H})\left(\left(\mathcal{A}_{2}-\mathcal{A}_{1}\right)^{-1} \in B(\mathcal{H})\right)$ and hence one can define an operator

$$
\begin{equation*}
\mathcal{P}=\mathcal{A}_{2}\left(\mathcal{A}_{2}+\mathcal{A}_{1}\right)^{-1} \quad\left(\mathcal{P}=\mathcal{A}_{2}\left(\mathcal{A}_{2}-\mathcal{A}_{1}\right)^{-1}\right) \tag{2.67}
\end{equation*}
$$

3) $(-1)^{j}\left(G \mathcal{A} j f, \mathcal{A}_{j} f\right) \leq 0, f \in \mathcal{D}, j=1,2$, and hence by Lemma 2.4 an operator M (2.66), (2.67) is dissipative (see [25]), 4) an operator M (2.66), (2.67) is maximal dissipative.

Then (2.64) holds for \mathcal{P} (2.67).
For $\mathcal{A}_{1}, \mathcal{A}_{2} \in B(\mathcal{H})$ Cor. 2.2 is contained in [1].
Next consider $\mathcal{L}(2.4)$ with the operators $A_{j}=A_{j}(\lambda)$ depending analytically on λ.

Suppose one has operator functions $A_{j}=A_{j}(\lambda), j=1,2$, in \mathcal{H} (possibly unbounded and not densely defined), with λ varying in a domain $\Lambda \subseteq C$, and assume that $\mathcal{D}_{A_{j}}=D$ does not depend on j and λ.

Lemma 2.8. Suppose that the vector functions $A_{j}(\lambda) f, j=1,2$, depend analytically on $\lambda \in \Lambda$ for all $f \in D$. With $S=S(\lambda), S=S_{1}(\lambda)$ being the vector functions associated to $A_{j}=A_{j}(\lambda)$ by (2.5), assume that for $\lambda \in \Lambda$:
$1^{o} . R(S(\lambda))=\mathcal{H},\left(R\left(S_{1}(\lambda)\right)=\mathcal{H}\right)$.
$\stackrel{2}{2}^{\circ}$. There exists $K(\lambda) \in B(\mathcal{H})$ such that $S_{1}(\lambda)=K(\lambda) S(\lambda) \quad(S(\lambda)=$ $\left.K(\lambda) S_{1}(\lambda)\right)$, with $\|K(\lambda)\|$ being locally bounded.

Then $K(\lambda)$ depends analytically on $\lambda \in \Lambda$.
Proof is expounded here for certainty in the case $S_{1}(\lambda)=K(\lambda) S(\lambda)$. First prove that the operator-valued function $K(\lambda)$ is strongly continuous at any $\lambda_{0} \in \Lambda$.

Denote by Δy an increment of the operator function $y=y(\lambda)$ at λ_{0}. For all $f \in \mathcal{H}$ one has

$$
\left(\Delta S_{1}\right) f=(\Delta(K S)) f=(\Delta K) S\left(\lambda_{0}+\Delta \lambda\right) f+K\left(\lambda_{0}\right)(\Delta S) f
$$

whence

$$
\begin{equation*}
(\Delta K) S\left(\lambda_{0}+\Delta \lambda\right) f \rightarrow 0 \tag{2.68}
\end{equation*}
$$

as $\Delta \lambda \rightarrow 0$ by continuity of $S(\lambda) f$ and $S_{1}(\lambda) f$. On the other hand,

$$
\begin{equation*}
\|(\Delta K)(\Delta S) f\| \leq\|\Delta K\|\|(\Delta S) f\| \rightarrow 0 \tag{2.69}
\end{equation*}
$$

as $\Delta \lambda \rightarrow 0$ by local boundedness of $\|K(\lambda)\|$. It follows from (2.68), (2.69) that $(\Delta K) S\left(\lambda_{0}\right) f \rightarrow 0$ as $\Delta \lambda \rightarrow 0$, hence $K(\lambda)$ is strongly continuous at λ_{0} since $R\left(S\left(\lambda_{0}\right)\right)=\mathcal{H}$.

Now prove that $K(\lambda)$ is analytic at λ_{0}. Since for all $f \in \mathcal{H}$

$$
\frac{\Delta(K S)}{\Delta \lambda} f=\frac{\Delta K}{\Delta \lambda} S\left(\lambda_{0}\right) f+K\left(\lambda_{0}+\Delta \lambda\right) \frac{\Delta S}{\Delta \lambda} f
$$

one can take into account that as $\Delta \lambda \rightarrow 0$ one has $K\left(\lambda_{0}+\Delta \lambda\right) f \xrightarrow{S} K\left(\lambda_{0}\right)$,

$$
\frac{\Delta(K S)}{\Delta \lambda} f=\frac{\Delta S_{1}}{\Delta \lambda} f \rightarrow \frac{d}{d \lambda}\left(S_{1} f\right), \quad \frac{\Delta S}{\Delta \lambda} f \rightarrow \frac{d}{d \lambda}(S f)
$$

This allows one to deduce that there exists $\lim _{\Delta \lambda \rightarrow 0} \frac{\Delta K}{\Delta \lambda} g$ for all $g \in \mathcal{H}$ since $R\left(S\left(\lambda_{0}\right)\right)=\mathcal{H}$. Thus for all $g, h \in \mathcal{H}$ the scalar function $(K(\lambda) g, h)$ is analytic in the domain Λ, hence [30, p. 195] $K(\lambda)$ is analytic in Λ. The Lemma is proved.

Theorem 2.8. Suppose that the vector-functions $A_{j} f=A_{j}(\lambda) f, j=1,2$, are analytic in $\lambda \in \Lambda$, for all $f \in D$, and assume $\mathcal{L}=\mathcal{L}(\lambda)$ (2.4) for $\lambda \in \Lambda$ is a maximal Q-nonnegative (Q-nonpositive) subspace, hence, in particular,

$$
\begin{equation*}
U_{1}(\lambda, f)-U_{2}(\lambda, f) \geq 0(\leq 0), \quad \lambda \in \Lambda \tag{2.70}
\end{equation*}
$$

with $U_{j}(\lambda, f)=\left(Q_{j} A_{j}(\lambda) f, A_{j}(\lambda) f\right), f \in D$.
Then: 1°. If for some $\lambda=\lambda_{0} \in \Lambda$, for all $f \in D$ one has an equality in (2.70), then this equality also holds for all $\lambda \in \Lambda$.

If, in addition, for some $\lambda=\mu_{0} \in \Lambda$ and all $f \in D$ the inequality (2.70) is separated, i.e., it is equivalent to the following two inequalities being valid simultaneously:

$$
\begin{equation*}
U_{1}(\lambda, f) \geq 0(\leq 0), \quad U_{2}(\lambda, f) \leq 0(\geq 0) \tag{2.71}
\end{equation*}
$$

then (2.70) is separated for all $\lambda \in \Lambda$.
2o. Suppose that $A_{j}(\lambda) \in B(\mathcal{H})$ for $\lambda \in \Lambda$ and (2.26) holds. Then if at some $\lambda=\lambda_{0} \in \Lambda$ for all nonzero $f \in \mathcal{H}$ one has a strict inequality in (2.70), then the strict inequality also holds for all $\lambda \in \Lambda$ and all nonzero $f \in \mathcal{H}$.

Pr o of is expounded here for certainty in the Q-nonnegative case.
1^{o}. By Th. 2.1, $A_{j}=A_{j}(\lambda)$ admits representations (2.7), (2.8), with $K_{+}=$ $K_{+}(\lambda)$ being a compression in \mathcal{H} which depends analytically on $\lambda \in \Lambda$ by Lemma 2.8. If we have an equality in (2.70) at $\lambda=\lambda_{0}$, then it follows from Remark 2.3 (alternatively, by (2.16)) that $K_{+}\left(\lambda_{0}\right)$ is an isometry. Hence one can use e.g., $[35$, p. 210] to deduce that $K_{+}(\lambda)=K_{+}\left(\lambda_{0}\right)$, for all $\lambda \in \Lambda$, which implies equality in (2.70) for all $\lambda \in \Lambda$ by Remark 2.3 (alternatively, by (2.16)).

Suppose that at $\lambda=\mu_{0}(2.70)$ is separated. Assume that the operators Γ_{j} in $(2.7),(2.8)$ are chosen so that $(2.1),(2.27)$ hold. Then by Th. $2.3, K_{+}\left(\mu_{0}\right)$ is of the form (2.29), hence by the above argument, $K_{+}(\lambda)=K_{+}\left(\mu_{0}\right)$ is of the same
form. Thus by Th. 2.3 the inequality (2.70) is separated for all $\lambda \in \Lambda$, which proves 1°.
2^{0}. Suppose that for $\lambda=\lambda_{0}$, for all nonzero $f \in \mathcal{H}$ one has strict inequality in (2.70), but there exist $\lambda=\gamma_{0} \in \Lambda$ and a nonzero $f=f_{0} \in \mathcal{H}$ which make (2.70) an equality. Thus $\left\|K_{+}\left(\gamma_{0}\right) S\left(\gamma_{0}\right) f_{0}\right\|=\left\|S\left(\gamma_{0}\right) f_{0}\right\|$ by (2.16), where $S^{-1}(\lambda) \in B(\mathcal{H})$ for all $\lambda \in \Lambda$ in view of Th. 2.2. Hence it follows from [35, p. 210] that for all $\lambda \in \Lambda$

$$
K_{+}(\lambda) S\left(\gamma_{0}\right) f_{0}=S\left(\gamma_{0}\right) f_{0},
$$

whence

$$
\begin{equation*}
K_{+}\left(\lambda_{0}\right) S\left(\lambda_{0}\right) g_{0}=S\left(\lambda_{0}\right) g_{0} . \tag{2.72}
\end{equation*}
$$

with $g_{0}=S^{-1}\left(\lambda_{0}\right) S\left(\gamma_{0}\right) f_{0} \neq 0$. Now (2.72) implies that (2.70) becomes equality with $\lambda=\lambda_{0}, f=g_{0}$ in view of (2.16). The contradiction we get demonstrates that 2° and the theorem are proved.

Remark 2.6. Suppose we are under assumptions of Th. 2.8 which precede its $n^{o} 1^{o}$, and suppose that for all $\lambda \in \Lambda$ (2.70) $(\geq 0$ or $\leq 0)$ is a strict inequality with some $f=f(\lambda) \in D$. Then the assumption that (2.70) is separated for some $\lambda=\mu_{0} \in \Lambda$ does not imply its separation for all $\lambda \in \Lambda$.

In fact, let

$$
\begin{align*}
Q_{1} & =Q_{2}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)\left(Q_{1}=Q_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\right), \\
A_{1} & =\left(\begin{array}{cc}
\lambda-i & \lambda+i \\
0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-\lambda-i & i-\lambda \\
1 & 0
\end{array}\right) . \tag{2.73}
\end{align*}
$$

Then with $\operatorname{Im} \lambda>0, \mathcal{L}(2.4),(2.73)$ is a maximal Q-positive (Q-negative) subspace such that the associated inequality (2.70) separates only at $\lambda=i$.

References

[32] V.I. Khrabustovsky, On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. I. General Case. - J. Math. Phys. Anal. Geom. 2 (2006), No. 2, 149-175.
[33] F.S. Rofe-Beketov, Self-adjoint Extensions of Differential Operators in a Space of Vector-Valued Functions. - Teor. Funkts. Funkts. Anal. i Prilozh. (1969), No. 8, 3-24. (Russian)
[34] S.G. Krein, Linear Differential Equations in Banach Space. Nauka, Moscow, 1967. (Russian). (Engl. Transl.: Math. Monogr. by J.M. Daskin; AMS Transl. 29 (1971), Providence, RI, v +390 .)
[35] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators in Hilbert Space. Mir, Moscow, 1970. (Russian)

[^0]: ${ }^{\star}(2.19) \Rightarrow(2.20) . \quad$ If (2.6) holds, where $B(\mathcal{H}) \ni K_{ \pm}$are not necessary compressions, then $(2.20) \Rightarrow(2.19)$.

[^1]: *In view of $[25$, p. 42] maximal Q-neutral subspace is maximal Q-nonnegative or maximal Q-nonpositive or both type.

[^2]: *And $\forall h \in \mathcal{H} \exists f \in D$:

[^3]: ${ }^{\star}$ Which are subspaces if and only if the operators $M_{ \pm i}$ are closed.

[^4]: ${ }^{\star}$ Alternatively, if $\bar{D}_{M_{-i}}=\mathcal{H}$ and $M_{i}=M_{-i}^{*}$

[^5]: *Note that for these manifolds the analog of Lemma 2.3 also holds.

[^6]: ${ }^{\star}$ By a virtue of Th .2 .4 , this is equivalent to maximal dissipativity of $M_{i}(2.36),(2.35)$, $\left(\mathcal{P}_{i}=\mathcal{P}, P=I\right)$, hence $\bar{D}_{\mathcal{P}}=\mathcal{H}$.

[^7]: ${ }^{\star}$ Closeness of \mathcal{P} also follows from the fact that $\mathcal{L}(2.4),(2.61)$ is subspace (see the footnote to (2.37)).

