Journal of Mathematical Physics, Analysis, Geometry 2006, vol. 2, No. 3, pp. 299–317

On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. II. Abstract Theory

V.I. Khrabustovsky

Ukrainian State Academy of Railway Transport 7 Feyerbakh Sq., Kharkov, 61050, Ukraine E-mail:khrabustovsky@kart.edu.ua

Received February 3, 2004

Special maximal semi-definite subspaces (maximal dissipative and accumulative relations) are considered. Particular cases of those arise in studying boundary problems for systems mentioned in the title. We provide a description of such subspaces and list their properties. A criterion is found that condition of semi-definiteness of sum of indefinite quadratic forms reduces to semi-definiteness of each of the summand forms, i.e it is separated. In the case when the forms depend on a parameter λ (e.g., a spectral parameter) within a domain $\Lambda \subset \mathbb{C}$, a condition is found under which separation of the semi-definiteness property at a single λ implies its separation for all λ .

Key words: maximal semi-definite subspace, maximal dissipative (accumulative) relation, idempotent.

Mathematics Subject Classification 2000: 34B07, 34G10, 46C20, 47A06, 47B50.

This work constitutes Part II of [32]. Notation, definitions, numeration of sections, statements, formulas etc., as well as the list of references, extend those of [32].

2. A Description and a Properties of Maximal Semi-definite Subspaces of a Special Form

Let $Q_j = Q_j^* \in B(\mathcal{H}), Q_j^{-1} \in B(\mathcal{H}), j = 1,2; \dim \mathcal{H}_{\pm}(Q_1) = \dim \mathcal{H}_{\pm}(Q_2),$ with $\mathcal{H}_{\pm}(Q_j)$ being invariant subspaces for the operators Q_j , which correspond

© V.I. Khrabustovsky, 2006

to positive and negative parts of their spectra. Then it is well know that there exists $\Gamma_j \in B(\mathcal{H})$ such that

$$\Gamma_j^{-1} \in B(\mathcal{H}), \quad \Gamma_j^* Q_j \Gamma_j = J,$$
(2.1)

where J is the canonical symmetry, that is $J = J^* = J^{-1}$ (for example [27], one can choose Γ_j so that $J = sgnQ_1$ or $J = sgnQ_2$). Represent J in the form

$$J = P_{+} - P_{-}, \tag{2.2}$$

with P_{\pm} being a pair of complementary orthogonal projections.

Introduce the notation

$$Q = diag(Q_1, -Q_2). (2.3)$$

Let A_j , j = 1, 2, be linear operators in \mathcal{H} (possibly unbounded and not densely defined) and suppose $\mathcal{D}_{A_1} = \mathcal{D}_{A_2} = \mathcal{D}$.

Consider the linear manifold

$$\mathcal{L} = \{A_1 f \oplus A_2 f | f \in \mathcal{D}\} \subset \mathcal{H}^2$$
(2.4)

and the operators

$$S = P_{+}\Gamma_{1}^{-1}A_{1} + P_{-}\Gamma_{2}^{-1}A_{2}, \qquad S_{1} = P_{+}\Gamma_{2}^{-1}A_{2} - P_{-}\Gamma_{1}^{-1}A_{1}.$$
(2.5)

Theorem 2.1. \mathcal{L} (2.4) is a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^2 if and only if the following conditions hold:

1°. $R(S) = \mathcal{H} (R(S_1) = \mathcal{H}).$

 2° . There exists a compression K_{+} (K₋) in \mathcal{H} such that

$$S_1 f = K_+ S f \quad (S f = K_- S_1 f) \quad \forall f \in \mathcal{D}.$$

$$(2.6)$$

(Under 1° K_+ (K₋) is unique).

Under (2.6), where linear operators K_{\pm} are not necessary from $B(\mathcal{H})$, the operators A_{i} allow a parametrization as follows:

$$A_1 = \Gamma_1 (P_+ - P_- K_+) S \qquad (A_1 = \Gamma_1 (P_+ K_- - P_-) S_1), \tag{2.7}$$

$$A_2 = \Gamma_2(P_- + P_+K_+)S \qquad (A_2 = \Gamma_2(P_+ + P_-K_-)S_1). \tag{2.8}$$

P r o o f. For certainty, we expound a proof for the case of Q-nonnegative \mathcal{L} . Necessity. Suppose \mathcal{L} (2.4) is a maximal Q-nonnegative subspace. Since

$$\mathbb{U}^* J_2 \mathbb{U} = \tilde{J}_2, \tag{2.9}$$

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 3

where

$$\mathbb{U} = \begin{pmatrix} P_{+} & -P_{-} \\ P_{-} & P_{+} \end{pmatrix} = \mathbb{U}^{*-1}, \qquad (2.10)$$

$$J_2 = diag(J, -J), \ \tilde{J}_2 = diag(I, -I),$$
(2.11)

the subspace

$$\tilde{\mathcal{L}} = \mathbb{U}^* \Gamma^{-1} \mathcal{L} = \{ Sf \oplus S_1 f | f \in \mathcal{D} \}$$
(2.12)

with

$$\Gamma = diag(\Gamma_1, \Gamma_2), \qquad (2.13)$$

is maximal \tilde{J}_2 -nonnegative. If so (see [24, p. 100], [25, Ch. I, §8]), there exists a compression K_+ in \mathcal{H} such that

$$\tilde{\mathcal{L}} = \{ g \oplus K_+ g | g \in \mathcal{H} \}.$$
(2.14)

Compare (2.12), (2.14) to see that 1^{o} and 2^{o} hold.

Sufficiency. Suppose 1^{o} and 2^{o} hold. Multiply from the left both parts of the initial formulas in (2.5), (2.6) by P_{+} and P_{-} respectively, and then sum up the resulting equalities to get the initial equality in (2.7). The initial equality from (2.8) can be deduced in a similar way.

With the notation

$$U_j[f] = (Q_j A_j f, A_j f), \quad f \in \mathcal{D},$$
(2.15)

apply (2.1), (2.2), (2.7), (2.8) to deduce that

$$U_1[f] - U_2[f] = ||Sf||^2 - ||K_+Sf|| \ge 0, \qquad (2.16)$$

since K_+ is a compression. Thus \mathcal{L} (2.4) is *Q*-nonnegative. Prove its maximality. For that, as one can see from [23], [25, p. 38], in view of (2.1), (2.2), it suffices to verify that

$$\mathbb{P}_{+}\mathcal{L} = \mathbb{P}_{+}\mathcal{H}^{2}, \qquad (2.17)$$

where

$$\mathbb{P}_{+} = \Gamma \begin{pmatrix} P_{+} & 0\\ 0 & P_{-} \end{pmatrix} \Gamma^{-1}.$$
 (2.18)

Apply (2.18), (2.13), (2.7), (2.8), together with the fact that $R(S) = \mathcal{H}$, to deduce that

$$\mathbb{P}_{+}\mathcal{L} = \mathbb{P}_{+}\{A_{1}f \oplus A_{2}f | f \in \mathcal{D}\} = \Gamma\{P_{+}Sf \oplus P_{-}Sf | f \in \mathcal{D}\}$$
$$= \Gamma\{P_{+}g \oplus P_{-}g | g \in \mathcal{H}\} = \Gamma\{P_{+}g \oplus P_{-}h | g, h \in \mathcal{H}\} = \mathbb{P}\mathcal{H}^{2}.$$

Thus (2.17), along with Th. 2.1, is proved.

Remark 2.1. Condition 1° in Th. 2.1 in the case $\dim \mathcal{H} = \infty$ could be replaced in general neither by

$$\exists \alpha > 0 : \forall f \in D \quad \|Sf\| \ge \alpha \|f\| \quad (\|S_1f\| \ge \alpha \|f\|), \tag{2.19}$$

nor by

$$\exists \beta > 0 : \forall f \in D \quad ||A_1f|| + ||A_2f|| \ge \beta ||f||.^{\star}$$
(2.20)

Proof. Let $\mathcal{H} = l^2$. Set up

$$A_1 = \Gamma_1 P_+ U, A_2 = \Gamma_2 P_- U \qquad (A_1 = -\Gamma_1 P_- U, A_2 = \Gamma_2 P_+ U)$$

with U being the one-sided shift in l^2 [28]. Then S = U, $S_1 = 0$ ($S_1 = U$, S = 0), hence condition 2^o in Th. 2.1 holds with the compression $K_+ = 0$ ($K_- = 0$). Therefore, in view of (2.16) (an analog of (2.16) for equality $S = K_-S_1$), \mathcal{L} (2.4) is Q-nonnegative (Q-nonpositive). On the other hand, $R(S) \neq \mathcal{H}$ ($R(S_1) \neq \mathcal{H}$), although (2.19), (2.20) hold. The Remark 2.1 is proved.

Theorem 2.1 implies

Corollary 2.1. Let the linear manifold \mathcal{L} and the operators S, S_1 be given by (2.4), (2.5), and suppose the following two conditions are satisfied:

\$\mathcal{L}\$ is Q-nonnegative (Q-nonpositive).
 \$S^{-1} ∈ B(\mathcal{H})\$ (S₁⁻¹ ∈ B(\mathcal{H})).
 Then \$\mathcal{L}\$ is a maximal Q-nonnegative (respectively, Q-nonpositive) subspace.

P r o of f is expounded here, e.g., for the Q-nonnegative case. Verify that 1), 2) imply the Conditions 1°, 2° of Th. 2.1. 2) implies 1° together with (2.6) in which $K_{+} = S_1 S^{-1}$. Then with this K_{+} the representations (2.7), (2.8) are valid, hence also equality (2.16). On the other hand, 1) implies inequality (2.16), whence K_{+} is a compression. The Corollary 2.1 is proved.

Remark 2.2. The transformation

$$\begin{pmatrix} iI & I \\ I & iI \end{pmatrix} \mathbb{U}^* \Gamma^{-1} \mathcal{L}$$

with \mathbb{U} , Γ as in (2.10), (2.13), reduces the maximal Q-nonnegative (Q-nonpositive) subspace \mathcal{L} (2.4) to a maximal accumulative (dissipative) relation in \mathcal{H} . Its Cayley transform V, relates to the compressions K_{\pm} from Th. 2.1 as follows: $V = \pm i K_{\pm}$.

P r o o f follows from the proof of Th. 2.1 and [22] (see also [2]).

^{*(2.19)} \Rightarrow (2.20). If (2.6) holds, where $B(\mathcal{H}) \ni K_{\pm}$ are not necessary compressions, then $(2.20)\Rightarrow(2.19)$.

Remark 2.3. (cf. [24, 25]). The formulae

$$\mathcal{L} = \{ \Gamma_1(P_+ - P_- K_+)h \oplus \Gamma_2(P_- + P_+ K_+)h | h \in \mathcal{H} \} \\ (\mathcal{L} = \{ \Gamma_1(P_+ K_- - P_-)h \oplus \Gamma_2(P_+ + P_- K_-)h | h \in \mathcal{H} \})$$
(2.21)

establish a one-to-one correspondence between compressions K_+ (K_-) in \mathcal{H} and maximal Q-nonnegative (Q-nonpositive) subspaces \mathcal{L} in \mathcal{H}^2 . (In the case \mathcal{L} being of the form (2.4), the compressions K_+ (K_-) in (2.7), (2.8) coincide to those in (2.21)). Besides that:

1) \mathcal{L} (2.21) is maximal Q-neutral subspace^{*} if and only if K_+ (K₋) is an isometry in \mathcal{H} .

2) \mathcal{L} (2.21) is hypermaximal Q-neutral subspace if and only if K_+ (K_-) is a unitary in \mathcal{H} .

P r o o f is expounded here for certainty in the Q-nonnegative case. If \mathcal{L} is of the form (2.21) with K_+ being a compression, then this \mathcal{L} satisfies the assumptions of Th. 2.1 since with this \mathcal{L} one has S = I, $S_1 = K_+S$. Thus by Th. 2.1 \mathcal{L} is a maximal Q-nonnegative subspace.

Conversely, let \mathcal{L} be a maximal Q-nonnegative subspace. Then one can use the idea of the proof of necessity in Th. 2.1 to deduce that $\mathcal{L} = \Gamma \mathbb{U}\tilde{\mathcal{L}}$ with Γ , \mathbb{U} , $\tilde{\mathcal{L}}$ as in (2.13), (2.10), (2.14), and additionally that in (2.14) K_+ is a compression, which implies (2.21).

A classification of \mathcal{L} (2.21) in terms of the properties of compressions K_{\pm} follows from (2.16) and [24, p. 100], [25, Ch. I, §4, 8]. Since the correspondence (2.21) is obviously on-to-one, the statement of the remark is proved.

The following theorem allows one to characterize a maximal Q-definite subspace in terms of a linear equation, which provides an analog of the existing characterization for Hermitian [33] (see also [3]) and maximal dissipative or accumulative [22], (see also [2]) relations.

Theorem 2.2. Suppose that the linear manifold \mathcal{L} (e.g. \mathcal{L} (2.4)) is a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^2 . Then there exists a unique compression K_+ (K_-) in \mathcal{H} such that

$$f \oplus g \in \mathcal{L} \quad \Leftrightarrow \quad B_1 f - B_2 g = 0,$$
 (2.22)

where

$$B_{1} = (K_{+}P_{+} - P_{-})\Gamma_{1}^{*}Q_{1}, \qquad B_{2} = (K_{+}P_{-} + P_{+})\Gamma_{2}^{*}Q_{2}$$

($B_{1} = (P_{+} - K_{-}P_{-})\Gamma_{1}^{*}Q_{1}, \qquad B_{2} = (K_{-}P_{+} + P_{-})\Gamma_{2}^{*}Q_{2}$) (2.23)

^{*}In view of [25, p. 42] maximal Q-neutral subspace is maximal Q-nonnegative or maximal Q-nonpositive or both type.

and \mathcal{L} admits representation (2.21) with these compressions K_{\pm} .

If in (2.23) K_{\pm} are arbitrary compressions in \mathcal{H} , then

$$\hat{\mathcal{L}} = \{B_1^* f \oplus B_2^* f | f \in \mathcal{H}\} \subset \mathcal{H}^2$$
(2.24)

is a maximal Q^{-1} -nonpositive (Q^{-1} -nonnegative) subspace in \mathcal{H}^2 and (as one can see from (2.23)),

$$||B_1^*f|| + ||B_2^*f|| > 0, \qquad 0 \neq f \in \mathcal{H}.$$
(2.25)

If \mathcal{L} is of the form (2.4) with $A_i \in B(\mathcal{H})$ and

$$||A_1f|| + ||A_2f|| > 0, \qquad 0 \neq f \in \mathcal{H}, \tag{2.26}$$

then $S^{-1} \in B(\mathcal{H})$, $(S_1^{-1} \in B(\mathcal{H}))$, where S, S_1 are as in (2.5), hence by (2.6) one has $K_+ = S_1 S^{-1}$ $(K_- = S S_1^{-1})$, i.e. B_j (2.23) admits an explicit expression in terms of A_j .

Conversely, suppose \mathcal{L} is given by (2.22), with $B_j \in B(\mathcal{H})$, j = 1, 2, and $\hat{\mathcal{L}}$ (2.24) is a maximal Q^{-1} -nonpositive (Q^{-1} -nonnegative) subspace in \mathcal{H}^2 . Then \mathcal{L} is a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^2 (hence admits representation (2.21)). Furthermore, if (2.25) holds, then the compressions K_{\pm} in (2.21) admit explicit expression in terms of B_j , specifically $K_+ = S_1^{*-1}S^*$ ($K_- = S^{*-1}S_1^*$) with S, S_1 being given by (2.5), where $A_1 = Q^{-1}B_1^*, A_2 = Q_2^{-1}B_2^*$ and $S_1^{-1} \in B(\mathcal{H})$ ($S^{-1} \in B(\mathcal{H})$).

P r o of f is expounded here for certainty in the Q-nonnegative case. Let \mathcal{L} be a maximal Q-nonnegative subspace. Then by Remark 2.3 there exists a unique compression K_+ , which makes valid (2.21), an equivalent of the initial equality in (2.12) with $\tilde{\mathcal{L}}$ (2.14). This implies by a virtue of [25, p. 73] that

$$\mathcal{L}^{[Q]} = Q^{-1}\hat{\mathcal{L}},$$

with $\hat{\mathcal{L}}$ being as in (2.24), (2.23); $\mathcal{L}^{[A]}$ stands here for A-orthogonal complement in \mathcal{H}^2 . Therefore

$$f \oplus g \in \mathcal{L} \Leftrightarrow (Q_1 f, Q_1^{-1} B_1^* h) - (Q_2 g, Q_2^{-1} B_2^* h) = 0 \ \forall h \in \mathcal{H},$$

which implies (2.22), (2.23). Furthermore, $Q^{-1}\hat{\mathcal{L}}$ is of the form (2.21) with $K_{-} = K_{+}^{*}$, hence $\hat{\mathcal{L}}$ (2.24), (2.23) is a maximal Q^{-1} -nonpositive subspace by Remark 2.3.

If \mathcal{L} (2.4) with $A_j \in B(\mathcal{H})$ being a maximal Q-nonnegative subspace, then $R(S) = \mathcal{H}$ by Th. 2.1. Besides that, $KerS = \{0\}$ since if Sf = 0 for some nonzero $f \in \mathcal{H}$, then by condition (2.6) of Th. 2.1 $S_1f = 0$ implies $A_1f = A_2f = 0$, which contradicts (2.26). Thus we have $S^{-1} \in B(\mathcal{H})$ by the Banach theorem.

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 3

Prove the converse. By our assumption, $Q^{-1}\hat{\mathcal{L}}$ is a maximal Q-nonpositive subspace. An application of Th. 2.1 provides the existence of a compression K_{-} such that

$$Q_1^{-1}B_1^* = \Gamma_1(P_+K_- - P_-)S_1, \qquad Q_2^{-1}B_2^* = \Gamma_2(P_+ + P_-K_-)S_1,$$

where S_1 is given by (2.5) with A_j being replaced by $Q_j^{-1}B_j^*$. Note that by a virtue of 1° of Th. 2.1 one has $KerS_1^* = \{0\}$, which yields

$$B_1f - B_2g = 0 \iff (K_-^*P_+ - P_-)\Gamma_1^*Q_1f - (P_+ + K_-^*P_-)\Gamma_2Q_2g = 0.$$

Therefore $\mathcal{L} = (Q^{-1}\hat{\mathcal{L}})^{[Q]}$, hence [25, p. 73] \mathcal{L} is a maximal Q-nonnegative subspace. An argument similar to that proving the direct statement demonstrates that for \mathcal{L} in (2.21) operator $K_+ = K_-^*$, which allows to one deduce the rest of statements in a similar way. The theorem is proved.

Lemma 2.1. (cf. [24, 25]). Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$; in (2.1) one has

$$J = \begin{pmatrix} I_1 & 0\\ 0 & -I_2 \end{pmatrix} \tag{2.27}$$

with I_j being the identity operators in \mathcal{H}_j , j=1,2. Then the formulae: $\mathcal{L} = A_1\mathcal{H}$ $(\mathcal{L} = A_2\mathcal{H})$, where

$$A_{1} = \Gamma_{1} \begin{pmatrix} I_{1} & 0 \\ K_{21} & 0 \end{pmatrix}, \qquad A_{2} = \Gamma_{2} \begin{pmatrix} 0 & K_{12} \\ 0 & I_{2} \end{pmatrix}, \qquad (2.28)$$

establish a one to one correspondence between compressions $K_{21} \in B(\mathcal{H}_1, \mathcal{H}_2)$ $(K_{12} \in B(\mathcal{H}_2, \mathcal{H}_1))$ and maximal Q_1 -nonnegative (Q_2 -nonpositive) subspaces \mathcal{L} in \mathcal{H} . Besides that:

$$f \in \mathcal{L} \quad \Leftrightarrow \quad \begin{pmatrix} 0 & 0 \\ K_{21} & I_2 \end{pmatrix} \Gamma_1^* Q_1 f = 0 \quad \left(\begin{pmatrix} I_1 & K_{12} \\ 0 & 0 \end{pmatrix} \Gamma_2^* Q_2 f = 0 \right).$$

The Lemma 2.1 proves in the same way as (2.21), (2.22), (2.23) with using [24, 25].

Note that with $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_1$ and

$$Q_1 = Q_2 = \begin{pmatrix} 0 & iI_1 \\ -iI_1 & 0 \end{pmatrix},$$

the maximal Q_1 -nonnegative (Q_1 -nonpositive) subspace in \mathcal{H} appears to be a maximal accumulative (dissipative) relation in \mathcal{H}_1 , and, after a suitable change of notation, Lemma 2.1 provides a well known [22] (see also [2, 3]) description for them.

Lemma 2.2. Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and the operator J in (2.1) is just (2.27). Then \mathcal{L} (2.4) together with the operators A_1, A_2 as in (2.28) of Lemma 2.1 is a maximal Q-nonnegative subspace in \mathcal{H}^2 .

Proof. For \mathcal{L} (2.4), (2.28) one has S = I, $S_1 = \begin{pmatrix} 0 & K_{12} \\ -K_{21} & 0 \end{pmatrix}$, so Lemma 2.2 is proved in view of Th. 2.1.

An analog for Lemma 2.2 is also valid for the Q-nonpositive case. In addition to Th. 2.1, we have

Theorem 2.3. Let \mathcal{L} (2.4) be a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^2 (that is, the assumptions 1°, 2° of Th. 2.1 are satisfied), and suppose that $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ with the operator J in (2.1) being just (2.27). Then $(-1)^j (Q_j A_j f, A_j f) \leq 0$ ((-1)^j ($Q_j A_j f, A_j f$) ≥ 0) for $f \in D$, j = 1, 2, if and only if the compressions in (2.7), (2.8) are of the form

$$K_{+} = \begin{pmatrix} 0 & K_{12}^{+} \\ K_{21}^{+} & 0 \end{pmatrix}, \qquad \begin{pmatrix} K_{-} = \begin{pmatrix} 0 & K_{12}^{-} \\ K_{21}^{-} & 0 \end{pmatrix} \end{pmatrix}, \qquad (2.29)$$

with $K_{ij}^{\pm} \in B(\mathcal{H}_j, \text{ being obviously compressions.})$

P r o o f is to be expounded here for certainty in the Q-nonnegative case. Necessity. Let $(-1)^j (QA_j f, A_j f) \leq 0$ for $f \in D$, j = 1, 2. Then since \mathcal{L} (2.4) is a maximal Q-nonnegative subspace, the linear manifolds $\{A_1 f | f \in D\}$ and $\{A_2 f | f \in D\}$ are, respectively, maximal Q₁-nonnegative and Q₂-nonpositive subspaces in \mathcal{H} . Thus by Th. 2.1 and Lemma 2.2 one has $\forall f \in D \exists h \in \mathcal{H}$: *

$$(P_{+} - P_{-}K_{+})Sf = \begin{pmatrix} I_{1} & 0\\ K_{21} & 0 \end{pmatrix}h,$$
(2.30)

$$(P_{-} + P_{+}K_{+})Sf = \begin{pmatrix} 0 & K_{12} \\ 0 & I_{2} \end{pmatrix}h,$$
(2.31)

where $Sf = g_1 \oplus g_2$, $h = h_1 \oplus h_2$; $g_j, h_j \in \mathcal{H}_j$, and the compression

$$K_{+} = \begin{pmatrix} K_{11}^{+} & K_{12}^{+} \\ K_{21}^{+} & K_{22}^{+} \end{pmatrix}, \qquad (2.32)$$

with $K_{ij}^+ \in B(\mathcal{H}_j, \mathcal{H}_i)$.

Multiply (2.30) from left by P_+ to get, in view of (2.27),

$$g_1 = h_1.$$
 (2.33)

*And $\forall h \in \mathcal{H} \exists f \in D$:

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 3

In a similar way, multiply (2.30) from left by \mathcal{P}_{-} to obtain in view (2.32)

$$-K_{21}^+g_1 - K_{22}^+g_2 = K_{21}h_1. (2.34)$$

Since $R(S) = \mathcal{H}$ by Th. 2.1, the vectors $g_j \in \mathcal{H}_j$ in (2.33), (2.34) are arbitrary. Thus it follows from (2.33), (2.34) that $K_{21}^+ = -K_{21}$, $K_{22}^+ = 0$. Deduce similarly from (2.31) that $K_{12}^+ = K_{12}, K_{11}^+ = 0$, which proves the necessity.

Sufficiency. Since \mathcal{L} (2.4) is a maximal Q-nonnegative subspace in \mathcal{H}^2 , it follows from Th. 2.1 together with (2.7), (2.8), (2.27), (2.29), that

$$A_1 = \Gamma_1 \begin{pmatrix} I_1 & 0 \\ -K_{21}^+ & 0 \end{pmatrix} S, \qquad A_2 = \Gamma_2 \begin{pmatrix} 0 & K_{12}^+ \\ 0 & I_2 \end{pmatrix} S.$$

So by Lem. 2.1 sufficiency, along with theorem 2.3 is proved.

Consider examples (Th. 2.4-2.7) of Q-semi-definite subspaces which arise in investigation of boundary problems for the equation (0.1).

Let P be an orthogonal projection in \mathcal{H} (in particular P can be an orthogonal projection onto N^{\perp} (see [32])), and let $M_{\pm i}$ be a linear operators (not necessary bounded) in \mathcal{H} with the property

$$M_{\pm i} = P M_{\pm i} P \tag{2.35}$$

(hence also $PD_{M_{\pm i}} \subseteq D_{M_{\pm i}}, (I-P)\mathcal{H} \subseteq D_{M_{\pm i}}$). Let $G = G^* \in B(\mathcal{H}), G^{-1} \in B(\mathcal{H})$ (in particular G can be equal to Q(c) (see [32])).

Represent $M_{\pm i}$ in the form

$$M_{\pm i} = \left(\mathcal{P}_{\pm i} - \frac{1}{2}I\right) (iG)^{-1}.$$
 (2.36)

Consider linear manifolds in \mathcal{H}^2 :

$$L_{\pm i} = \{ \left[(\mathcal{P}_{\pm i} - I)(iG)^{-1}P + (I - P) \right] f \oplus \left[\mathcal{P}_{\pm i}(iG)^{-1}P + (I - P) \right] f | f \in D_{M_{\pm i}} \}^{*}$$
(2.37)

and introduce the notation

$$G_2 = diag(G, -G).$$

^{*}Which are subspaces if and only if the operators $M_{\pm i}$ are closed.

Lemma 2.3. If $\overline{D}_{M_i} = \mathcal{H}$ and the operators $M_{\pm i}$ are related as follows

$$M_{-i} = M_i^*, ^* \tag{2.38}$$

then the linear manifolds L_i and L_{-i} are G_2 -orthogonal.

P r o o f reduces to a direct computation which uses that, in view of (2.38),

$$\mathcal{P}_{-i} = I - G^{-1} \mathcal{P}_i^* G. \tag{2.39}$$

Lemma 2.4. The linear manifolds $L_{\pm i}$ are $\pm G_2$ -nonnegative if and only if $\pm Im(M_{\pm i}f, f) \geq 0$ for all $f \in D_{M_{\pm i}}$.

P r o o f reduces to a direct computation.

Theorem 2.4. The linear manifolds $L_{\pm i}$ (2.37) are maximal $\pm G_2$ -nonnegative subspaces in \mathcal{H}^2 if and only if $\pm M_{\pm i}$ are maximal dissipative operators in \mathcal{H} .

P r o o f is expounded here for certainty in the case of L_i . Necessity. Suppose L_i is a maximal G_2 -nonnegative subspace. Hence operator M_i is closed.

Prove that $\overline{D}_{M_i} = \mathcal{H}$. Clearly \mathcal{H} can be represented in the form $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ so that there exists $\Gamma \in B(\mathcal{H})$ with $\Gamma^{-1} \in B(\mathcal{H})$, $\Gamma^* G\Gamma = J$ (2.27). For L_i (2.37) compute the operator S (2.5) with $\Gamma_1 = \Gamma_2 = \Gamma$. One has:

$$\Gamma S = M_i + \frac{i}{2} \Gamma \Gamma^* P + I - P. \qquad (2.40)$$

Suppose there exists a nonzero $f_0 \in D_{M_i}^{\perp}$. Since $R(S) = \mathcal{H}$ by Th. 2.1, there exists $g_0 \in D_{M_i}$ such that $\Gamma S g_0 = f_0$. Then it follows from (2.40), (2.35) that

$$0 = (f_0, Pg_0) = (M_i Pg_0, Pg_0) + \frac{i}{2} \|\Gamma^* Pg_0\|^2,$$

whence

$$0 = Im(M_i Pg_0, Pg_0) + \frac{1}{2} \|\Gamma^* Pg_0\|^2.$$
(2.41)

It follows from (2.41) that $Pg_0 = 0$, since the first term in (2.41) is nonnegative by Lemma 2.4. On the other hand, (2.40), (2.35) imply that $0 = (f_0, (I-P)g_0) =$ $||(I-P)g_0||^2$, hence $g_0 = 0 \Rightarrow \overline{D}_{M_i} = \mathcal{H}$. Thus M_i is closed dissipative operator (see [34]) by Lemma 2.4.

Prove that $Im(M_i^*f, f) \leq 0$ for $f \in D_{M_i^*}$. Since L_i is a maximal G_2 nonnegative subspace, it follows from Lemma 2.3 that L_{-i} (2.37), (2.38) is a G_2 -nonpositive linear manifold in view of [25, p. 73]. Thus Lemma 2.4 together

^{*}Alternatively, if $\overline{D}_{M_{-i}} = \mathcal{H}$ and $M_i = M_{-i}^*$

with (2.38) implies $Im(M_i^*f, f) \leq 0$ for $f \in D_{M_i^*}$, which proves necessity in view of [34, p. 109].

Sufficiency. Suppose that M_i (2.35) is maximal dissipative. Hence the linear manifold L_i (2.37) is G_2 -nonnegative by Lemma 2.4.

Prove that for this manifold the operator S given by (2.5) is such that $S^{-1} \in B(\mathcal{H})$ where $\mathcal{L}(2.4) = L_i, \Gamma_j = \Gamma$.

Prove that $0 \neq \sigma_p(S) \cup \sigma_c(S)$. If not, then there exists a sequence $\{f_n\}$ such that $f_n \in D(M_i), ||f_n|| = 1$, and $\Gamma S f_n \to 0$, whence in view of (2.40) one has

$$Im(M_i P f_n, P f_n) + \frac{1}{2} \|\Gamma^* P f_n\|^2 \to 0.$$
 (2.42)

Since the first term in (2.42) is nonnegative due to dissipativity of M_i , it follows from (2.42) that $Pf_n \to 0$. On the other hand, (2.40), (2.35) imply that $||(I-P)f_n||^2 = (\Gamma Sf_n, (I-P)f_n) \to 0$, hence $f_n \to 0$. The contradiction we get proves that $0 \neq \sigma_p(S) \cup \sigma_c(S)$.

Prove that $0 \notin \sigma_r(S)$. If not, there exists a nonzero $f \in D_{M_i^*}$ such that $(\Gamma S)^* f = 0$, since $D_{(\Gamma S)^*} = D_{M_i^*}$ in view of (2.40). Then by a virtue of (2.40), (2.35) one has

$$PM_i^* Pf - \frac{i}{2} P\Gamma\Gamma^* f + (I - P)f = 0, \qquad (2.43)$$

whence (I - P)f = 0. Thus by (2.43) one has

$$Im(M_i^*Pf, Pf) - \frac{1}{2} \|\Gamma^*Pf\| = 0.$$
(2.44)

It follows from maximal dissipativity of M_i that the first term in (2.44) is nonpositive [34, p. 109]. Thus by (2.44) Pf = 0, hence f = 0. It follows that $0 \notin \sigma_r(S)$, therefore $S^{-1} \in B(\mathcal{H})$, which completes the proof in view of Cor. 2.1. For $P = I, M_{\pm i} \in B(\mathcal{H})$ Th. 2.4 is contained in [1].

Corollary 2.2. If $\pm M_i$ are maximal dissipative operators in \mathcal{H} , then $L_{\pm i} = \{ [(\mathcal{P}_{\pm i} - I)G^{-1}f + (I - P)g] \oplus [\mathcal{P}_{\pm i}G^{-1}f + (I - P)g] | f \in D_{M_{\pm i}}, g \in \mathcal{H} \}.$

P r o o f follows from the fact that for linear manifolds in the right hand side the analog of Lemma 2.4 holds.*

Lemma 2.5. Let $\overline{D}_{M_i} = \mathcal{H}$, the operators $M_{\pm i}$ be related by (2.38), and the operators $X_{\pm ij} \in B(\mathcal{H}), j = 1, 2$, be related by

$$X_{-i1}^* Q_1 X_{i1} = G = X_{-i2}^* Q_2 X_{i2}.$$
(2.45)

^{*}Note that for these manifolds the analog of Lemma 2.3 also holds.

Then the linear manifolds

$$\mathcal{L}_{\pm i} = diag(X_{\pm i1}, X_{\pm i2})L_{\pm i} \tag{2.46}$$

are Q-orthogonal, with $L_{\pm i}$ being as in (2.37).

P r o o f follows from (2.45) and Lemma 2.3.

Lemma 2.6. Suppose $\tilde{X}_{\pm ij}, \tilde{X}_{\pm ij}^{-1} \in B(\mathcal{H}), j = 1, 2, and the following three conditions are satisfied:$

1°. $\tilde{L}_{\pm i}$ are a maximal $\pm G_2$ -nonnegative subspaces in \mathcal{H}^2 .

 2^{o} . The subspaces

$$\tilde{\mathcal{L}}_{\pm i} = diag(\tilde{X}_{\pm i1}, \tilde{X}_{\pm i2})\tilde{L}_{\pm i}$$

are $\pm Q$ -nonnegative.

 3^o .

$$\pm \tilde{X}_{\pm i1}^* Q_1 \tilde{X}_{\pm i1} \le \pm G \le \pm \tilde{X}_{\pm i2}^* Q_2 \tilde{X}_{\pm i2} \tag{2.47}$$

Then $\mathcal{L}_{\pm i}$ are a maximal $\pm Q$ -nonnegative subspaces in \mathcal{H}^2 .

P r o o f is presented here for certainty in the case of $\tilde{\mathcal{L}}_i$. Suppose that $\tilde{\mathcal{L}}_i$ is not maximal, that is \mathcal{H}^2 contains a *Q*-nonnegative subspace $T \supset \tilde{\mathcal{L}}_i$. Then the subspace $T_1 = diag(\tilde{X}_{i1}^{-1}, \tilde{X}_{i2}^{-1})T$ contains \tilde{L}_i . By a virtue of (2.47) for all $f_1 \oplus f_2 \in T$, one has

$$(G\tilde{X}_{i1}^{-1}f_1, \tilde{X}_{i1}^{-1}f_1) - (G\tilde{X}_{i2}^{-1}f_1, \tilde{X}_{i2}^{-1}f_2) \ge (Q_1f_1, f_1) - (Q_2f_2, f_2) \ge 0,$$

since T is Q-nonnegative. Thus T_1 is a Q-nonnegative subspace, which contradicts maximality of \tilde{L}_i . The lemma is proved.

Theorem 2.5. Suppose L_i (L_{-i}) (2.37) is a maximal G_2 -nonnegative $(G_2$ -nonpositive) subspace in \mathcal{H}^2 , and (2.38) holds. Let for $X_{\pm ij} \in B(\mathcal{H}), j = 1, 2,$ (2.45) holds.

Then \mathcal{L}_{-i} (\mathcal{L}_i) (2.46) is Q-nonpositive (Q-nonnegative) manifold in \mathcal{H}^2 .

Additionally, if $X_{ij}^{-1} \in B(\mathcal{H})$, $X_{-ij}^{-1} \in B(\mathcal{H})$, j = 1, 2, (2.47) for $\tilde{X}_{\pm ij} = X_{\pm ij}$ holds with + (-), and the spectrum of either of the operators Y_{i1} , Y_{i2} does not cover the unit circle, where

$$\Gamma_j Y_{\pm ij} = X_{\pm ij}; \ \Gamma_j \in B(\mathcal{H}), \ \Gamma_j^{-1} \in B(\mathcal{H}), \ \Gamma_j^* Q_j \Gamma_j = G, \ j = 1, 2,$$
(2.48)

(hence in view of (2.45) the spectrum of either of the operators Y_{-i1} , Y_{-i2} does not cover the unit circle).

Then \mathcal{L}_{-i} (\mathcal{L}_i) (2.46) is a maximal Q-nonpositive (Q-nonnegative) subspace in \mathcal{H}^2 .

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 3

P r o of d Q-semidefiniteness for \mathcal{L}_{-i} (\mathcal{L}_i) follows from [25, p. 73] in view of Lemma 2.5 and Th. 2.4.

The subsequent argument is expounded here for certainty in the case when condition (2.47) (with +) for $\tilde{X}_{+ij} = X_{ij}$ holds. In view of (2.48) we have

$$Y_{i1}^* G Y_{i1} \le G \le Y_{i2}^* G Y_{i2}$$

Thus by (2.45) one has

$$Y_{-i1}G^{-1}Y_{-i1}^* \ge G^{-1} \ge Y_{-i2}G^{-1}Y_{-i2}^*,$$

whence in view of [24, p. 96], we deduce that

$$Y_{-i1}^*GY_{-i1} \ge G \ge Y_{-i2}^*GY_{-i2},$$

since the spectrum of either of the operators Y_{-i1}^*, Y_{-i2}^* does not cover the unit circle.

Hence by (2.48) the condition (2.47) (with -) for $X_{-ij} = X_{-ij}$ holds. Finally, maximality of L_i implies maximality for L_{-i} in view of (2.38), Th. 2.4, and [34, p. 109]. Thus \mathcal{L}_{-i} is a maximal *Q*-nonpositive subspace by Lemma 2.6. The theorem is proved.

The next theorem allows one to use Remark 1.1 for producing c.o. of a boundary problem for the equation (0.1) with a non-separated boundary condition, whose special case is the periodic boundary condition.

Theorem 2.6. Suppose:

1°.

$$\Gamma, \Gamma^{-1} \in B(\mathcal{H}), \quad Q_2 = \Gamma^* Q_1 \Gamma.$$
 (2.49)

 2^{o} .

$$\mathbf{U} \in B(\mathcal{H}), \mathbf{U}^* Q_1 \mathbf{U} - Q_1 \le 0 \ (\ge 0).$$
(2.50)

 3° . The spectrum of **U** does not cover the unit circle. Then \mathcal{L} (2.4) with

$$A_1 = I, \qquad A_2 = \Gamma^{-1} \mathbf{U} \tag{2.51}$$

is a maximal Q-nonnegative (Q-nonpositive) subspace in \mathcal{H}^2 .

P r o o f is expounded here for certainty in the Q-nonnegative case. It follows from (2.49), (2.50) that \mathcal{L} (2.4), (2.51) is Q-nonnegative.

Since by (2.1), (2.49)

$$\Gamma_2^* \Gamma^* Q_1 \Gamma \Gamma_2 = J, \qquad (2.52)$$

one can set up in (2.1) $\Gamma_1 = \Gamma \Gamma_2 \stackrel{def}{=} \Gamma_3$. Once this is done, the operator S for \mathcal{L} (2.4), (2.51) acquires the form

$$S = P_{+}\Gamma_{3}^{-1} + P_{-}\Gamma_{3}^{-1}\mathbf{U}.$$
 (2.53)

Prove that $S^{-1} \in B(\mathcal{H})$. Start with demonstrating that $0 \notin \sigma_p(S) \cup \sigma_c(S)$. If not, there exists a sequence $\{f_n\}$ such that

$$f_n \in \mathcal{H}, \quad ||f_n|| = 1, \quad Sf_n \to 0. \tag{2.54}$$

It follows from (2.53), (2.54) that

$$P_{-}\Gamma_{3}^{-1}f_{n} - \Gamma_{3}^{-1}f_{n} \to 0, \qquad P_{+}\Gamma_{3}^{-1}\mathbf{U}f_{n} - \Gamma_{3}^{-1}\mathbf{U}f_{n} \to 0, \qquad (2.55)$$

whence

312

$$\left\{ \left[(J\Gamma_3^{-1}\mathbf{U}f_n, \Gamma_3^{-1}\mathbf{U}f_n) - (J\Gamma_3^{-1}f_n, \Gamma_3^{-1}f_n) \right] - \left[(JP_+\Gamma_3^{-1}\mathbf{U}f_n, P_+\Gamma_3^{-1}\mathbf{U}f_n) - (JP_-\Gamma_3^{-1}f_n, P_-\Gamma_3^{-1}f_n) \right] \right\} \to 0.$$
 (2.56)

On the other hand, by a virtue of (2.52), the first bracket in (2.56) is just $(\mathbf{U}^*Q_1\mathbf{U}f_n, f_n) - (Q_1f_n, f_n)$, hence nonpositive in view of (2.50). By (2.2), the second bracket in (2.56) equals

$$||P_{+}\Gamma_{3}^{-1}\mathbf{U}f_{n}||^{2} + ||P_{-}\Gamma_{3}^{-1}f_{n}||^{2}.$$

Thus we deduce from (2.56) that

$$P_+\Gamma_3^{-1}\mathbf{U}f_n \to 0, \qquad P_-\Gamma_3^{-1}f_n \to 0$$

whence $f_n \to 0$ by (2.55). The contradiction we get proves that $0 \neq \sigma_p(S) \cup \sigma_c(S)$. Prove that $0 \notin \sigma_r(S)$. If not, then for some nonzero $f \in \mathcal{H}$ one has

$$\mathbf{U}^* \Gamma_3^{*-1} P_- f = -\Gamma_3^{*-1} P_+ f. \tag{2.57}$$

On the other hand, since the spectrum of \mathbf{U} does not cover the unit circle, it follows from [24, p. 96] that

$$\left(Q_1^{-1}\mathbf{U}^*\Gamma_3^{*-1}P_{-}f, \mathbf{U}^*\Gamma_3^{*-1}P_{-}f\right) + \left[-\left(Q_1^{-1}\Gamma_3^{*-1}P_{-}f, \Gamma_3^{*-1}P_{-}f\right)\right] \le 0.$$
(2.58)

Now by (2.57), (2.52), (2.2), the first term in (2.58) equals $||P_+f||$, while the second term by (2.52), (2.2) equals $||P_-f||^2$, whence f = 0. Hence $0 \in \sigma_r(S)$, which finishes the proof in view of Cor. 2.1.

Remark 2.4. The proof show that condition \mathscr{S}^{o} in the Th. 2.6 is unnecessary, when $Q_{j} \gg 0$ $(Q_{j} \ll 0)$, j = 1, 2, and when $Q_{j} \ll 0$ $(Q_{j} \gg 0)$, $\mathbf{U}^{-1} \in B(\mathcal{H})$. If Q_{j} are indefinite or if $Q_{j} \ll 0$ $(Q_{j} \gg 0)$ it is impossible in general to get rid of \mathscr{S}^{o} .

In fact, if $Q_1 = Q_2 = W$, $\mathbf{U} = T$, where T, indefinite W see [24, p.67], then (2.50), (≥ 0) holds and hence the linear manifold (2.4), (2.51) is Q-nonnegative, but for it $KerS^* \neq \{0\}$. Hence (2.4), (2.51) isn't maximal by Th. 2.1. If $\mathcal{H} = l^2$, $Q_1 = Q_2 = -I(I)$, \mathbf{U} is the one-side shift in l^2 [28], then (2.50) (with = 0) holds and for (2.4), (2.51) $KerS^*(S_1^*) \neq \{0\}$. Hence (2.4), (2.51) isn't maximal by Th. 2.1.

Lemma 2.7. Let A_j , j = 1, 2, be linear operators in \mathcal{H} , $D_{A_j} = D$, $(-1)^j (Q_j A_j f, A_j f) \leq 0$ (hence \mathcal{L} (2.4) is a Q-nonnegative manifold in \mathcal{H}^2), and suppose \mathcal{L} (2.4) is a maximal Q-nonnegative subspace in \mathcal{H}^2 (hence $\mathcal{L}_j = \{A_j f | f \in \mathcal{D}\}$ are maximal $(-1)^j Q_j$ -nonpositive subspaces in \mathcal{H}). Then

$$\mathcal{L}^{[Q]} = \mathcal{L}_1^{[Q_1]} \oplus \mathcal{L}_2^{[Q_2]}, \tag{2.59}$$

where [A] stands for the A-orthogonal complement in the associated Hilbert subspace.

P r o o f. Since \mathcal{L} is a maximal Q-nonnegative subspace, one deduces by [25, p. 73] that $\mathcal{L}^{[Q]}$ is a maximal Q-nonpositive subspace:

$$\mathcal{L}^{[Q]} = (\mathcal{L}_1 \oplus \mathcal{L}_2)^{[Q]} \supseteq \mathcal{L}_1^{[Q_1]} \oplus \mathcal{L}_2^{[Q_2]}, \qquad (2.60)$$

with $\mathcal{L}_{j}^{[Q_{j}]}$ being maximal $(-1)^{j}Q_{j}$ -nonnegative subspaces by [25, p. 73]. Thus by an analogue of Lemma 2.2 for the *Q*-nonpositive case, the subspace in the right hand side of the inclusion (2.60) is maximal *Q*-nonpositive. Hence the equality in (2.59), together with the Lemma, is proved.

The case P = I in Th. 2.4 is supplemented by

Theorem 2.7. Let \mathcal{P} be linear operator in \mathcal{H} . Set

$$A_1 = \mathcal{P} - I, \qquad A_2 = \mathcal{P}. \tag{2.61}$$

1°. Suppose \mathcal{L} (2.4), (2.61) is a maximal G_2 -nonnegative subspace in \mathcal{H}^2 *, hence, in particular,

$$(GA_1f, A_1f) - (GA_2f, A_2f) \ge 0, \ f \in D_{\mathcal{P}}.$$
(2.62)

Let inequality (2.62) is separated, i.e., is equivalent to the pair of inequalities being simultaneously satisfied:

$$(-1)^{j}(GA_{j}f, A_{j}f) \leq 0, \qquad j = 1, 2; \ f \in D_{\mathcal{P}}.$$
 (2.63)

*By a virtue of Th. 2.4, this is equivalent to maximal dissipativity of M_i (2.36), (2.35), $(\mathcal{P}_i = \mathcal{P}, P = I)$, hence $\overline{D}_{\mathcal{P}} = \mathcal{H}$.

Then

$$D_{\mathcal{P}^2} = D_{\mathcal{P}}, \quad \mathcal{P}^2 = \mathcal{P}, \tag{2.64}$$

that is, \mathcal{P} is an idempotent.

2°. Conversely, let \mathcal{L} (2.4), (2.61) be G_2 -nonnegative, that is, (2.62) holds, and let \mathcal{P} be an idempotent, i.e., (2.64) holds.

Then (2.62) is separated, that is, (2.63) holds.

Proof. 1^{o} . Lemmas 2.7, 2.3 imply

$$\mathcal{L}_1^{[G]} \oplus \mathcal{L}_2^{[G]} = \mathcal{L}^{[G_2]} \supseteq \left\{ -G^{-1}\mathcal{P}^* Gg \oplus (I - G^{-1}\mathcal{P}^* G)g | g \in D_{\mathcal{P}^*G} \right\}.$$

It follows that

$$\mathcal{L}_1^{[G]} \supseteq \left\{ G^{-1} \mathcal{P}^* G g | g \in D_{\mathcal{P}^* G} \right\},$$

hence one has

$$((\mathcal{P}-I)f, \mathcal{P}^*h) = 0, \qquad \forall f \in D_{\mathcal{P}}, \ h \in D_{\mathcal{P}^*}.$$
(2.65)

On the other hand, since the operator

$$M = (\mathcal{P} - \frac{1}{2}I)(iG)^{-1}$$
(2.66)

is maximal dissipative by Th. 2.4, \mathcal{P} is densely defined, closed^{*}, hence [30, p. 335] \mathcal{P}^* is densely defined, and $\mathcal{P}^{**} = \mathcal{P}$. Thus (2.65) means that $(\mathcal{P} - I)f \in D_{\mathcal{P}^{**}} = D_{\mathcal{P}}$ and

$$\mathcal{P}(\mathcal{P}-I)f = 0, \qquad \forall f \in D_{\mathcal{P}},$$

which proves (2.64).

 2^{o} . Set up subsequently in (2.62), (2.61) $f = \mathcal{P}h$, $h \in D_{\mathcal{P}}$, and $f = (\mathcal{P} - I)h$, we obtain (2.63) in view of (2.64). The theorem is proved.

Replace G with -G to see that an analogue for Th. 2.7 is valid for G_2 nonpositive \mathcal{L} (2.4), (2.61).

For $\mathcal{P} \in B(\mathcal{H})$ Th. 2.7 is contained in [1].

Remark 2.5. There exists a maximal G_2 -nonnegative subspace of the form \mathcal{L} (2.4), (2.61), with \mathcal{P} being an unbounded idempotent, defined densely in \mathcal{H} .

In fact, represent $M(\lambda)$ (1.104), (1.103), (1.102) in the form (1.20) and set $\mathcal{P} = \mathcal{P}(i)$. As the operator $M(\lambda)$ (1.104) is maximal dissipative if $Im\lambda > 0$, it follows from Th. 2.4 that \mathcal{P} is the desired idempotent.

Theorem2.7 implies

^{*}Closeness of \mathcal{P} also follows from the fact that \mathcal{L} (2.4), (2.61) is subspace (see the footnote to (2.37)).

Corollary 2.3. Let for linear operators \mathcal{A}_1 , \mathcal{A}_2 in \mathcal{H} the following conditions hold: 1) $D_{\mathcal{A}_1} = D_{\mathcal{A}_2} = \mathcal{D}$, 2) $(\mathcal{A}_2 + \mathcal{A}_1)^{-1} \in B(\mathcal{H})$ $((\mathcal{A}_2 - \mathcal{A}_1)^{-1} \in B(\mathcal{H}))$ and hence one can define an operator

$$\mathcal{P} = \mathcal{A}_2(\mathcal{A}_2 + \mathcal{A}_1)^{-1} \quad (\mathcal{P} = \mathcal{A}_2(\mathcal{A}_2 - \mathcal{A}_1)^{-1}), \tag{2.67}$$

3) $(-1)^{j}(G\mathcal{A}_{j}f, \mathcal{A}_{j}f) \leq 0, f \in \mathcal{D}, j = 1, 2, and hence by Lemma 2.4 an operator M (2.66), (2.67) is dissipative (see [25]), 4) an operator M (2.66), (2.67) is maximal dissipative.$

Then (2.64) holds for \mathcal{P} (2.67).

For $\mathcal{A}_1, \mathcal{A}_2 \in B(\mathcal{H})$ Cor. 2.2 is contained in [1].

Next consider \mathcal{L} (2.4) with the operators $A_j = A_j(\lambda)$ depending analytically on λ .

Suppose one has operator functions $A_j = A_j(\lambda)$, j = 1, 2, in \mathcal{H} (possibly unbounded and not densely defined), with λ varying in a domain $\Lambda \subseteq C$, and assume that $\mathcal{D}_{A_j} = D$ does not depend on j and λ .

Lemma 2.8. Suppose that the vector functions $A_j(\lambda)f$, j = 1, 2, depend analytically on $\lambda \in \Lambda$ for all $f \in D$. With $S = S(\lambda)$, $S = S_1(\lambda)$ being the vector functions associated to $A_j = A_j(\lambda)$ by (2.5), assume that for $\lambda \in \Lambda$:

1°. $R(S(\lambda)) = \mathcal{H}, (R(S_1(\lambda)) = \mathcal{H}).$

2°. There exists $K(\lambda) \in B(\mathcal{H})$ such that $S_1(\lambda) = K(\lambda)S(\lambda)$ $(S(\lambda) = K(\lambda)S_1(\lambda))$, with $||K(\lambda)||$ being locally bounded.

Then $K(\lambda)$ depends analytically on $\lambda \in \Lambda$.

P r o o f is expounded here for certainty in the case $S_1(\lambda) = K(\lambda)S(\lambda)$. First prove that the operator-valued function $K(\lambda)$ is strongly continuous at any $\lambda_0 \in \Lambda$.

Denote by Δy an increment of the operator function $y = y(\lambda)$ at λ_0 . For all $f \in \mathcal{H}$ one has

$$(\Delta S_1)f = (\Delta (KS))f = (\Delta K)S(\lambda_0 + \Delta \lambda)f + K(\lambda_0)(\Delta S)f,$$

whence

$$\Delta K)S(\lambda_0 + \Delta\lambda)f \to 0 \tag{2.68}$$

as $\Delta \lambda \to 0$ by continuity of $S(\lambda)f$ and $S_1(\lambda)f$. On the other hand,

(

$$\|(\Delta K)(\Delta S)f\| \le \|\Delta K\| \|(\Delta S)f\| \to 0$$
(2.69)

as $\Delta \lambda \to 0$ by local boundedness of $||K(\lambda)||$. It follows from (2.68), (2.69) that $(\Delta K)S(\lambda_0)f \to 0$ as $\Delta \lambda \to 0$, hence $K(\lambda)$ is strongly continuous at λ_0 since $R(S(\lambda_0)) = \mathcal{H}$.

Now prove that $K(\lambda)$ is analytic at λ_0 . Since for all $f \in \mathcal{H}$

$$\frac{\Delta(KS)}{\Delta\lambda}f = \frac{\Delta K}{\Delta\lambda}S(\lambda_0)f + K(\lambda_0 + \Delta\lambda)\frac{\Delta S}{\Delta\lambda}f,$$

one can take into account that as $\Delta \lambda \to 0$ one has $K(\lambda_0 + \Delta \lambda)f \xrightarrow{S} K(\lambda_0)$,

$$\frac{\Delta(KS)}{\Delta\lambda}f = \frac{\Delta S_1}{\Delta\lambda}f \to \frac{d}{d\lambda}(S_1f), \qquad \frac{\Delta S}{\Delta\lambda}f \to \frac{d}{d\lambda}(Sf).$$

This allows one to deduce that there exists $\lim_{\Delta\lambda\to 0} \frac{\Delta K}{\Delta\lambda} g$ for all $g \in \mathcal{H}$ since $R(S(\lambda_0)) = \mathcal{H}$. Thus for all $g, h \in \mathcal{H}$ the scalar function $(K(\lambda)g, h)$ is analytic in the domain Λ , hence [30, p. 195] $K(\lambda)$ is analytic in Λ . The Lemma is proved.

Theorem 2.8. Suppose that the vector-functions $A_j f = A_j(\lambda)f$, j = 1, 2, are analytic in $\lambda \in \Lambda$, for all $f \in D$, and assume $\mathcal{L} = \mathcal{L}(\lambda)$ (2.4) for $\lambda \in \Lambda$ is a maximal Q-nonnegative (Q-nonpositive) subspace, hence, in particular,

$$U_1(\lambda, f) - U_2(\lambda, f) \ge 0 \ (\le 0), \qquad \lambda \in \Lambda, \tag{2.70}$$

with $U_j(\lambda, f) = (Q_j A_j(\lambda) f, A_j(\lambda) f), f \in D.$

Then: 1°. If for some $\lambda = \lambda_0 \in \Lambda$, for all $f \in D$ one has an equality in (2.70), then this equality also holds for all $\lambda \in \Lambda$.

If, in addition, for some $\lambda = \mu_0 \in \Lambda$ and all $f \in D$ the inequality (2.70) is separated, i.e., it is equivalent to the following two inequalities being valid simultaneously:

$$U_1(\lambda, f) \ge 0 \ (\le 0), \qquad U_2(\lambda, f) \le 0 \ (\ge 0),$$
 (2.71)

then (2.70) is separated for all $\lambda \in \Lambda$.

2°. Suppose that $A_j(\lambda) \in B(\mathcal{H})$ for $\lambda \in \Lambda$ and (2.26) holds. Then if at some $\lambda = \lambda_0 \in \Lambda$ for all nonzero $f \in \mathcal{H}$ one has a strict inequality in (2.70), then the strict inequality also holds for all $\lambda \in \Lambda$ and all nonzero $f \in \mathcal{H}$.

P r o o f is expounded here for certainty in the Q-nonnegative case.

1°. By Th. 2.1, $A_j = A_j(\lambda)$ admits representations (2.7), (2.8), with $K_+ = K_+(\lambda)$ being a compression in \mathcal{H} which depends analytically on $\lambda \in \Lambda$ by Lemma 2.8. If we have an equality in (2.70) at $\lambda = \lambda_0$, then it follows from Remark 2.3 (alternatively, by (2.16)) that $K_+(\lambda_0)$ is an isometry. Hence one can use e.g., [35, p. 210] to deduce that $K_+(\lambda) = K_+(\lambda_0)$, for all $\lambda \in \Lambda$, which implies equality in (2.70) for all $\lambda \in \Lambda$ by Remark 2.3 (alternatively, by (2.16)).

Suppose that at $\lambda = \mu_0$ (2.70) is separated. Assume that the operators Γ_j in (2.7), (2.8) are chosen so that (2.1), (2.27) hold. Then by Th. 2.3, $K_+(\mu_0)$ is of the form (2.29), hence by the above argument, $K_+(\lambda) = K_+(\mu_0)$ is of the same

form. Thus by Th. 2.3 the inequality (2.70) is separated for all $\lambda \in \Lambda$, which proves 1^o.

2⁰. Suppose that for $\lambda = \lambda_0$, for all nonzero $f \in \mathcal{H}$ one has strict inequality in (2.70), but there exist $\lambda = \gamma_0 \in \Lambda$ and a nonzero $f = f_0 \in \mathcal{H}$ which make (2.70) an equality. Thus $||K_+(\gamma_0)S(\gamma_0)f_0|| = ||S(\gamma_0)f_0||$ by (2.16), where $S^{-1}(\lambda) \in B(\mathcal{H})$ for all $\lambda \in \Lambda$ in view of Th. 2.2. Hence it follows from [35, p. 210] that for all $\lambda \in \Lambda$

$$K_+(\lambda)S(\gamma_0)f_0 = S(\gamma_0)f_0,$$

whence

$$K_{+}(\lambda_{0})S(\lambda_{0})g_{0} = S(\lambda_{0})g_{0}.$$
(2.72)

with $g_0 = S^{-1}(\lambda_0)S(\gamma_0)f_0 \neq 0$. Now (2.72) implies that (2.70) becomes equality with $\lambda = \lambda_0$, $f = g_0$ in view of (2.16). The contradiction we get demonstrates that 2^o and the theorem are proved.

Remark 2.6. Suppose we are under assumptions of Th. 2.8 which precede its $n^{o} 1^{o}$, and suppose that for all $\lambda \in \Lambda$ (2.70) (≥ 0 or ≤ 0) is a strict inequality with some $f = f(\lambda) \in D$. Then the assumption that (2.70) is separated for some $\lambda = \mu_0 \in \Lambda$ does not imply its separation for all $\lambda \in \Lambda$.

In fact, let

$$Q_1 = Q_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \left(Q_1 = Q_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \right),$$

$$A_1 = \begin{pmatrix} \lambda - i & \lambda + i \\ 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} -\lambda - i & i - \lambda \\ 1 & 0 \end{pmatrix}.$$
 (2.73)

Then with $Im\lambda > 0$, \mathcal{L} (2.4), (2.73) is a maximal *Q*-positive (*Q*-negative) subspace such that the associated inequality (2.70) separates only at $\lambda = i$.

References

- [32] V.I. Khrabustovsky, On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. I. General Case. — J. Math. Phys. Anal. Geom. 2 (2006), No. 2, 149–175.
- [33] F.S. Rofe-Beketov, Self-adjoint Extensions of Differential Operators in a Space of Vector-Valued Functions. — Teor. Funkts. Funkts. Anal. i Prilozh. (1969), No. 8, 3-24. (Russian)
- [34] S.G. Krein, Linear Differential Equations in Banach Space. Nauka, Moscow, 1967. (Russian). (Engl. Transl.: Math. Monogr. by J.M. Daskin; AMS Transl. 29 (1971), Providence, RI, v+390.)
- [35] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators in Hilbert Space. Mir, Moscow, 1970. (Russian)