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For the systems as in the title, boundary-value problems with separated

boundary conditions are considered. We prove that the characteristic ope-

rator of such problem admits a special expression in terms of the projection

(characteristic projection). This allows one to introduce for the above sys-

tems the analogues of the Weyl functions and solutions, to establish for them

the Weyl type inequalities which turn out to be well known in a number of

special cases.
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3. Separated Condition (1.10). Characteristic Projection

De�nition 3.1. Let M(�) be a c.o. for equation (0.1) on I. We say that

condition (1.10) is separated with a nonreal � = �0 if for any H-valued function

f(t) 2 L2
w�0

(I) with a compact support solution x�0(t) (1.9), for � = �0 of (0.1)

satis�es

lim
t#a
=�0U [x�0(t)] � 0; lim

t"b
=�0U [x�0(t)] � 0:? (3.1)

?Every limit in (3.1) exists in view of (1.11).
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Note that ifM(�) is a c.o. and in one of inequalities (3.1) there is an equality,

then another one holds automatically due to (1.10).

The following statement admits a proof similar to that of n020 of Th. 1.1.

Remark 3.1. The validity of (3.1) with a nonreal � = �0 for an operator

function M(�) 2 B(H) of the form (1.20) and any H-valued vector function

f(t) 2 L2
w�0

(I) with compact support is equivalent to

8t 2 �I � =�0�
�
�0
(t) � 0 (3.2)

with ��
�
(t) being as in (1.67).

Theorem 3.1. Let P = I, M(�) (1.20) be a c.o. of (0.1), =�0 6= 0. Then

condition (1.10) corresponding to M(�) is separated with � = �0 if and only if

P2(�0) = P(�0): (3.3)

P r o o f. Suppose that condition (1.10) is separated with � = �0. Take in (3.2)

t = c. Then one has: =�0P
�(�0)GP(�0) � 0, =�0(I �P

�(�0))G(I �P(�0)) � 0,
which implies (3.3) in view of (1.69) and Ths. 2.4, 2.7.

Conversely, suppose (3.3) holds. By no2o of Th. 1.1 one has

8[�; �] � �I : =�0(P
�(�0)X

�
�0
(�)Q(�)X�0

(�)P(�0)

�(I �P�(�0))X
�
�0
(�)Q(�)X�0

(�)(I �P(�0))) � 0: (3.4)

Multiply (3.4) by P�(�0) from the left and by P(�0) from the right to deduce

that 8� 2 �I =�0�
+
�0
(�) � 0. In a similar way one can establish that 8� 2 �I

=�0�
�
�0
(�) � 0, so the theorem is proved in view of Remark 3.1.

As a consequence of (1.68), formula (9) of [1] and Ths. 3.1, 2.4, 2.7, formula

(1.69) we have

Corollary 3.1. Let P = I,M(�) (1.20) be a c.o. of (0.1) on I. Then in order

to claim that condition (1.10) is separated with a nonreal � = �0, it is necessary

to have simultaneously the two inequalities

(I �P�(�0))��0
(�; c)(I �P�(�0)) �

1

2=�0
(I �P�(�0))G(I �P(�0));

P�(�0)��0
(c; �)P(�0) � �

1

2=�0
P�(�0)GP(�0);

(3.5)

for all �nite � � c � �, [�; �[� �I, and it is su�cient to have simultaneously the

two inequalities (3.5) with � = c = �.
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Remark 3.2. If M(�);P(�) 2 B(H) are related by (1.20), then

M(�) =M�(��)() P(�) = G�1(I �P�(��))G

() (I �P�(��)G(I �P(�)) = P�(��)GP(�) (3.6)

and hence �
M(�) =M�(��)

�
^
�
(P2(�) = P(�)

�
() (I �P�(��)G(I �P(�)) = P�(��)GP(�) = 0: (3.7)

The following Remark 3.3. establishes a relationship between a c.o. with

the separated condition (1.10) and the boundary-value problems with separated

boundary conditions which depend on the spectral parameter.

Remark 3.3. Suppose the interval I = (a; b) is �nite and condition (1.3)

holds with F = H. Then:

10. If operator functions M�;N� from n010 of Remark 1.1 are such that

M�
��
Q(a)M� = N �

��
Q(b)N�, =�M

�
�
Q(a)M� � 0, =�N �

�
Q(b)N� � 0, =� 6= 0

(i.e., boundary condition (1.14), (1.13) is separated), then a solution of boundary-

value problem (0.1), (1.14), (1.13) for any H-valued f(t) 2 L2
w�

(I) is given by

x�(t) (1.9), where M(�) is a c.o. of (0.1) on I for which condition (1.10) is

separated. Hence M(�) admits representation (1.20), with P(�) being a projection

which, as one can easily see, is just

P(�) = �X�1
�

(b)N�

�
X�1

�
(a)M(�) �X�1

�
(b)N (�)

��1
(3.8)

where (:::)�1 2 B(H). In this setting, boundary condition (1.14), (1.13) is sepa-

rated ,
�
M�

��
Q(a)M� = 0

�
_
�
N�

��
Q(b)N� = 0

�
, =� 6= 0.

20. If M(�) (1.20) is a c.o. of (0.1) on I in such a way that P2(�) = P(�),
then x�(t) (1.9) is a solution of some boundary-value problem from n010 of Re-

mark 1.1 with separated boundary condition (1.14, (1.13)).

P r o o f. All the claims of n010; except the last one, follow from n010 of

Remark 1.1. As for the last claim of n010, it follows from

M�
��
Q(a)M� = N �

��
Q(b)N�

= (X�1
��

(a)M�� �X�1
��

(b)N��)
�GP(�)(I �P(�))

�
X�1

�
(a)M� �X�1

�
(b)N�

�
;

which is a consequence of (1.1), (1.15), (1.20), (3.6).

The claim 20 follows by an argument of proof of n020 of Remark 1.1, Th. 3.1,

Remark 3.1. Remark 3.3 is proved.
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Theorem 3.2. Let P = I;M(�) be a c.o. of (0.1) on I: Then one has:

1. If condition (1.10) is separated with some nonreal �, then it is separated

with ��.
2. Suppose I is �nite and there exist �0, �0 such that =�0=�0 > 0 and

the following is true: 1) condition (1.10) with � = �0 becomes an equality; 2)

condition (1.10) with � = �0 is separated. Then condition (1.10) is separated

with any nonreal �.

3. If in (0.1) one has H�(t) = H0(t) + �H(t);H0(t) = H�
0 (t) and (1.3) holds

with F = H, then n020 is valid without assuming �niteness of I.

P r o o f. 10 follows from Th. 3.1 and Remark 3.2.

20 follows from Remarks 1.1, 3.3 and Th. 2.8.

30. Without assumption P = I, consider in L2
H
(I) � L2

H
(I) a linear ma-

nifold L00 =
n
y(t) � g(t)

��� y(t) L
2
H
(I)
= x(t); x(t) 2 ACloc is a vector function

with compact support; g(t)
L
2
H
(I)
= f(t); f(t) is an H-valued vector function and

l[x] = H(t)f(t); with l[x(t)] = i

2
((Q(t)x(t))0 +Q(t)x0(t)) �H0(t)x(t)

o
, which is

symmetric [37, p. 75] by the Lagrange formula.

In what follows we replace generic elements of L00 by the elements of the form

x(t)� f(t). Introduce the notation L0 = �L00.
In the case whenM(�) is a c.o., we keep the notation R(�) for an extension by

a continuity onto L2
H
(I) of the operator R�(1.9) originally de�ned on H-valued

vector functions f(t) 2 L2
H
(I) with compact support, which is bounded by n01

of Th. 1.1.

We need the following two Lemmas; the �rst one does not require P = I. In

the statements and in the proofs of Lems. 3.1, 3.2 and Remark 3.3 the notation

of operator and its graph coincide.

Lemma 3.1. R(�) is a generalized resolvent of the subspace L0 (in the sense

of formula (6.25) of [37]).

P r o o f. Note that R�(�) = R(��) since M�(�) = M(��), that R(�) satis�es
(1.65) with R� = R(�) and that R(�) depends analytically on � by [30, p. 195].

These observations imply, in view of Th. 6.8 of [37], that in our case to �nish

proving of the Lem. 3.1. it remains to verify that

R(�)(L0 � �) � I; (3.9)

with I being the graph of an identity operator in L2
H
(I).

If L00 = fx(t) � f(t)g; then

R(�)(L00 � �) = x(t)� x�(t);

452 Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4
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with x�(t) = R�(f(t)� �x(t)). Introduce the notation z�(t) = x�(t)� x(t).
If suppx(t) � [�; �] � �I, then by (1.10) one has

=�((Q(�)z�(�); z�(�))� (Q(�)z�(�); z�(�))) � 0: (3.10)

On the other hand,

(Q(�)z�(�); z�(�)) � (Q(�)z�(�); z�(�)) = 2=�

�Z
�

(H(t)z�(t); z�(t))dt; (3.11)

since

l[z�(t)] = �H(t)z�(t):

It follows from (3.10), (3.11) that z�
L
2
H
(I)
= 0, hence

R(�)(L00 � �) � I: (3.12)

Suppose y(t)� g(t) 2 L0 and L
0
0 3 yn(t)� gn(t)! y(t)� g(t). Then by (3.12)

one has

R(�)
�
y(t)� [g(t)� �y(t)]

�
= limR(�)

�
yn(t)� [gn(t)� �yn(t)]

�
= lim(yn(t)� yn(t)) = y(t)� y(t);

so that (3.9), and hence Lem. 3.1, are proved.

Lemma 3.2. Let H be an arbitrary Hilbert space, R(�) the generalized resol-

vent of a symmetric subspace S � H2, and

9�0; =�0 6= 0; 8f 2 H : kR(�0)fk
2 =

=(R(�0)f; f)

=�0
: (3.13)

Then:

10. (3.13) is valid for all � with =�=�0 > 0.
20.

R(�) =

(
( ~S � �)�1; =�=�0 > 0;

( ~S� � �)�1; =�=�0 < 0;
(3.14)

with ~S being a maximal symmetric extension of S.

P r o o f. 10. It is known from [37, p. 95] that

R(�) = (T (�)� �)�1; (3.15)

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4 453
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with the linear subspace T (�) � H2 being such that

=T (�) � 0(max); =� > 0; (3.16)

T (��) = (T (�))�: (3.17)

Its Cayley transform C�(T (�)) with �xed �, =�=� > 0, is a contraction in H

which depends analytically on �.

Since with =�=� 6= 0, f 2 H one has

k(I + (�� ��)R(�))fk2 = kfk2 + 4(=�)2
�
kR(�)fk2 �

=(R(�)f; f)

=�

�
;

C�0
(T (�0)) is an isometry in H in view of formula (4.17) from [37]. Thus C�0

(T�)
= C�0

(T�0) with =�=�0 > 0 by [35, p. 210], hence 10 is proved in view of formula

(4.17) from [37].

20. Use 10 to deduce from Th. 6.7, the formulas (6.20)�(6.24) from [37] and

(3.16) that T (�) = T (�0)
def

= ~S with =�=�0 > 0, where ~S is the maximal sym-

metric extension of S by Th. 6.2 from [37]. Thus 20 is proved in view of (3.15),

(3.17). Lemma 3.2 is proved.

Turn back to the proof of Th. 3.2. It is clear from the proof of n06 of Th. 1.1

that if (1.3) holds with F = H, then the integral

x�(t) =

bZ
a

K(t; s; �)H(t)f(t)dt; (3.18)

with K(t; s; �) being as in (1.85), converges and x�(t) 2 L2
H
(I) even in the case

when an H-valued f(t) 2 L2
H
(I) does not have a compact support. Prove that in

this case inequalities (3.1) hold for x�0(t) (3.18), if they hold for x�0(t)(3.18), (� =
�0) with f(t) having a compact support. Let fn(t) = �n(t)f(t) with �n(t) being
characteristic functions of the intervals (�n; �n) " (a; b). In view of convergence

of (3.18) and (1.70), it is possible to choose for any " > 0 such N" that for all

n � N" one has

kx�0(c)� xn
�0
(c)k < "; (3.19)

with xn
�0
(t) being given by (3.18) in which � = �0, f(t) = fn(t),

kx�0(t)� xn�0(t)kL2
H
(I) < "; (3.20)

8� 2 (a; c)
1

2

��(U [x�0(c)]� U [x�0(�)]) � (U [xn�0(c)] � U [xn�0(�)])
��

� j=�0j
�
kx�0(t)k

2
L
2
H
(�;c)

� kxn�0(t)k
2
L
2
H
(�;c)

�
+
���=((x�0(t); f(t))L2

H
(�;c) � (xn�0(t); fn(t))L2

H
(�;c))

��� < �: (3.21)
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Thus in view of (3.19)�(3.21)

U [x�0(�)] � U [xn
�0
(�)]! 0

uniformly in � 2 (a; c). Therefore, for the following limit which exists due to

(1.70), one has

lim
t#a
=�0U [x�0(t)] = lim

�n#a
=�0U [x�0(�n)] = lim

�n#a
=�0U [x

n

�0
(�n)] � 0:

The second inequality in (3.1) for x�0(t) admits a similar veri�cation. After that

n03 follows from the Hilbert identity for R(�), which is valid if =�=�0 > 0 in

view of Lem. 2.4 from [37] and (1.70), Lems. 3.1, 3.2. The Theorem 3.2 is proved.

Note that assumption 1) in n02 of Th. 2.2 could not be omitted in general, as

it follows from Remarks 1.1, 2.6.

We are about to expand Lem. 3.1 in the case when � is involved into H�(t)
nonlinearly as follows:

H�(t) = �H(�) +H1
�
(t); (3.22)

with H1
�
(t) satisfying the same conditions as H�(t), H(t) � 0.

Let M(�) be a c.o. of (0.1), (3.22). Then, if an H-valued f(t) 2 L2
H
(I) has

compact support and suppf(t) � [�; �] � �I, one has in view of n02 of Th. 1.1

that x�(t) (3.18) with =� 6= 0 satis�es the inequality

=�(U [x�(�)]� U [x�(�)]) � 0; (3.23)

since
R
b

a
X�

��
(t)H(t)f(t)dt 2 N? by (3.22).

Denote by <�f = x�(t) (3.18), with an H-valued f(t) 2 L2
H
(I) having a com-

pact support. Using (3.23), (3.22), one can prove, just as in the case of n01 of

Th. 1.1, that

k<�f)kL2
H
(I) �

=(<�f; f)L2
H
(I)

=�
; =� 6= 0: (3.24)

Denote by <(�) the extension by a continuity onto L2
H
(I) of <�f which is

bounded by (3.24). Note that <�(�) = <(��) since M�(�) = M(��), that <(�)
satis�es (3.24) with <� = <(�) and that <(�) depends analytically on � by [30,

p. 195]. Therefore, in view of Ths. 4.5, 3.2 from [37], we come to the following

Remark 3.4. <(�) = (T (�)��)�1, where the linear subspace T (�) � L2
H
(I)�

L2
H
(I) satis�es (3.16), (3.17), and its Cayley transform C�(T�); (see [37]) under

�xed � and =�=� > 0; is a contraction in L2
H
(I) which depends analytically on �.
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De�nition 3.2. If an operator function M(�) 2 B(H) of the form (1.20)

is a c.o. of (0.1) on I in such a way that P(�) = P2(�), then P(�) is called

a characteristic projection (c.p.) of (0.1) on I (or merely a c.p.).

Theorem 3.3. A c.p. of (0.1) on I exists if one of the ends of I is �nite or

if for some �0 2 A \ R
1 the norm kX�

�0
(t)w�0

(t)X�0
(t)k is summable at one of

the ends of I. Also, a c. p. exists if (1.3) holds with F = H.

If Q(t) is de�nite, then a c.p. of (0.1) exists without any additional conditions.

P r o o f. By Lemma 1.2 and the proof of Th. 1.2, it is su�cient to prove

Th. 3.3 for (0.1) with an inde�nite constant Q(t) = G.

If one of the ends of I is �nite or the norm kX�
�0
(t)w�0

(t)X�0
(t)k is summable

at one of its ends, then, in view of Remark 1.2, the Th. 3.3 has already been

proved while proving Th. 1.2.

Assume I = R1 and (1.3) holds with F = H.

First, suppose that c = �. Consider the projection P+(�) associated via (1.20)

to the c.o. of (0.1) on (c;1), which is constructed within the scheme of the proof

of Th. 2.1, Case I (see Remark 1.2).

It follows from Th. 3.1, Cor. 3.1 and Lem. 1.1 that

9Æ(�) > 08f 2 H :
1

2=�
(P�+(�)GP+(�)f; f) � �Æ(�)kP+(�)fk

2 (=� 6= 0)

and by Remark 1.2 and Lem. 1.9 one has

9c+ > 0 8f 2 H : (Sgn=�)(I �P�+(�))G((I �P+(�))f)

� c+k(I �P+(�))fk
2 (=� 6= 0):

On the other hand, replace �(�) by I��(�) and then use the scheme described

in the proof of Case I, Th. 2.1 to produce a c.o. on (�1; c) for (0.1). Consider

the projection P�(�) associated with this c.o. by (1.20). By Remark 1.2 and

Lem. 1.9 for =� 6= 0

9c� > 0 8f 2 H : (Sqn=�)(P��(�)GP�(�)f; f) � �c�kP�(�)fk
2;

=�(I �P��(�))G(I �P�(�)) � 0:

Therefore by Lem. 2.4, Th. 2.4, and [25, p. 76] one has

H = (I �P�(�))H
:

+ P+(�)H:

Denote by P(�) the projection onto P+(�)H parallel to (I �P�(�))H.

By Lemma 1.3 and [1] (see also Cor. 2.3) one has

P(�) = P+(�)(P+(�) + I �P�(�))
�1;
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with (:::)�1 2 B(H). It is easy to see that P(�) is a desired c.p.

If c 6= �, produce in a similar way a c.p. P(�) for the case when

the Cauchi operator of (0.1) is normalized by I at �. Then the desired c.p. is

just X�1
�

(�)P(�)X�(�), so the Th. 3.3 is proved.

Note that with P 6= I (3.1) does not imply (3.3) and (3.3) does not imply

(3.1) even in the �nite dimensional case, as one can see from

Example 3.1. Let I = (0; 1), c = 0, in (0.1):

Q(t) =

�
0 i

�i 0

�
; H�(t) =

�
0 0
0 i=4

�
; =� > 0:

Then:

I. M(�) (1.20) is a c.o. with

P(�) =

�
0 1
0 2

�
6= P2(�); =� > 0:

However condition (1.10) is separated with =� > 0.
II. M(�) (1.20) is a c.o. with

P(�) =

�
i 1

1 + i 1� i

�
= P2(�); =� > 0:

However condition (1.10) is not separated with =� > 0.
With P 6= I one has the following analogue of Th. 3.1.

Theorem 3.4. Suppose P 6= I and 9�0 2 CnR
1,  2 �I:

N =
\
��

Ker��0
(�; ) or N =

\
��

Ker��0
(; �):

LetM(�) be a c.o. of (0.1). If condition (1.10) associated toM(�) is separated
with nonreal � = �0, then

9M0 2 B(H) : PM0P = 0; M(�0) +M0 =

�
P �

1

2
I

�
(iG)�1:

Here the operator P is extendable from (GN)? to, possibly unbounded, den-

sely de�ned in H; idempotent which, in the case when either dimP�H < 1 or

dimP+H <1 with P� being as in (2.1), (2.2), is a bounded projection in H.
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4. The Weyl Type Functions and Solutions

In this section a < c < b, unless a di�erent assumption is stated. Condition

(1.3) with F = H is valid for I = I+ = (a; c) if I+ 6= ; and I = I� = (c; b) if
I� 6= ;.

The following theorem describes a relationship between the c.p. on I and

on I�.

Theorem 4.1. 10. Let P(�) be a c.p. of (0.1) on I, P� = P�(�) 2 B(H)
be some operator-valued functions that depend analytically on nonreal � and such

that

�=�P ��GP� � 0; �=�(I � P ��)G(I � P�) � 0; =� > 0 or =� < 0; (4.1)

P�(�) = G�1(I � P ��(
��))G; =� 6= 0:? (4.2)

Then

H = P+(�)H
:

+ P(�)H = P�(�)H
:

+ (I �P(�))H: (4.3)

Denote also by P+(�) and P�(�) the projections onto P(�)H and P�(�)H,

respectively, parallel to P+(�)H and (I �P(�))H, respectively.

Then P�(�) are c.p. of (0.1) on I = I� in such a way that

P+(�) = P(�)(P(�) + P+(�))
�1;P�(�) = P�(�)(P�(�) + I �P(�))�1; (4.4)

with

(P(�) + P+(�))
�1; (P�(�) + I �P(�))�1 2 B(H): (4.5)

20. Let P�(�) be a pair of c.p. of (0.1) with

Q(t) = Q�(t); Q�(c) = G; H�(t) = H�
�
(t); t 2 I�; (4.6)

on I = I�, then H = P+(�)H
:

+ (I �P�(�))H.

Suppose P(�) projects onto P+(�)H parallel to (I �P�(�))H. Then P(�) is

a c.p. of (0.1),(4.6) on I = (a; b) in such a way that

P(�) = P+(�)S�(�)(P+(�)S�(�) + (I �P�(�))S+(�))
�1; (4.7)

where S+(�) and S�(�) are the Riesz projections for the operator (sgn=�)G that

correspond to positive and negative parts of its spectrum, respectively; (P+(�)S�(�)
+(I �P�(�))S+(�))

�1 2 B(H).
If the c.p. P�(�) is generated by the c.p. P(�) according to (4.4) in n010 of

the theorem, then n020 results exactly this P(�).

?(4.1) implies by Lem. 2.4, Ths. 2.4, 2.7, that P 2
�(�) = P�(�) for =� > 0 or =� < 0, so for

all nonreal � by (4.2).
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P r o o f. In view of (4.1), (4.2), Th. 2.4, Lem. 2.4, (3.6), (3.7), [25,

p. 73], P�(�)H and (I � P�(�))H are respectively maximal �=�G-nonnegative

and maximal �=G-nonpositive subspaces for nonreal �. In view of Corollary 3.1,

condition (3.1) with F = H for I = I� and [25, p. 71] (or Th. 2.4, (1.69) (or

Lem. 2.4)), P(�)H and (I �P(�))H are respectively maximal uniformly �=�G-

positive and maximal uniformly �=�G-positive subspaces for nonreal �. Hence

we have (4.3) by [25, p. 76] and (4.5) by Lem. 1.3. Thus we have (4.4) by [1] (or

Cor. 2.3) and hence P�(�) depends analytically on nonreal �. Thus P�(�) are
c.p. of (0.1) on I� since P(�) is a c.p. and by (3.6), (3.7), (4.2).

20 is proved similarly to 10. The Theorem is proved.

The following remark allows, in particular, to transform a c.p. so that the

corresponding to it boundary condition at one end of interval is not changed, but

boundary condition at another end coincides with any given. This Remark is

proved in the same way as Th. 4.1.

Remark 4.1. 10. a) Let ~P(�) be a c. p. of (0.1) on I. Then, if one sets

P+(�) = I � ~P(�), P�(�) = ~P(�) in 10 of Th. 4.1, then P�(�) (4.4) becomes

a c.p. of (0.1) not only on I�, but on I as well. b) Let ~P�(�) be a c.p. of

(0.1),(4.6) on I = I�. Then, if one sets P+(�) = I � ~P�(�), P�(�) = ~P+(�) in
10 of Th. 4.1, then (4.4) becomes a c.p. of (0.1) not only on I�, but also on I as

well with

Q(t) =

(
Q(t); t 2 I+

Q�(t); t 2 I�
; H�(t) =

(
H�(t); t 2 I+

H�
�
(t); t 2 I�

in the case of P+(�) and with

Q(t) =

(
Q+(t); t 2 I+

Q(t); t 2 I�
; H�(t) =

(
H+

�
(t); t 2 I+

H�(t); t 2 I�

in the case of P�(�).
20. If one replaces in (4.7) I � P�(�)(P+(�)) by P+(�)(P�(�)) as in 10 of

Th. 4.1, then one still has in (4.7) (:::)�1 2 B(H), however P(�) (4.7) in general

is no longer a c.p. of (0.1) on I, but a c.p. on I+(I�), that projects onto

P+(�)(P�(�)) parallel to P+(�)H((I �P�(�))H).?

We are about to demonstrate a procedure of producing the operator Weyl

type functions and solutions of (0.1) that uses projections from Ths. 3.1, 4.1.

In view of (1.22), (2.1), (2.2) it is easy to see that

9�(t) 2 B(H) : ��1(t) 2 B(H); �(t) 2 ACloc; ��(t)Q(t)�(t) = P+ � P�;

(4.8)

?The transformations of c.p. on I� such that they don't change boundary condition at the

point c construct in the similar way.
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with P� being complementary orthogonal projections that do not depend on t.

Theorem 4.2. Let P(�) be a c.p. of (0.1) on (a; b). Then there exist unique

strict contractions K�(�) = K�
�(

��) that depend analytically on nonreal � such

that

K�(�) 2 B(P�H; P�H);=� > 0;K�(�) 2 B(P�H; P�H);=� < 0; (4.9)

P(�) =

8>>>><
>>>>:

�(c)(P� +K+(�)P�)(I� �K�(�)K+(�))
�1(P� �K�(�)P+)�

�1(c);

=� > 0;

�(c)(P+ +K+(�)P+)(I+ �K�(�)K+(�))
�1(P+ �K�(�)P�)�

�1(c);

=� < 0;

(4.10)

(here I� are the identity operators in P�H), and for the operator solutions

	�(t; �) =

(
X�(t)�(c)(P� +K�(�)P�); =� > 0;

X�(t)�(c)(P� +K�(�)P�); =� < 0;
(4.11)

of the homogeneous equation (0.1), (4.8) one has

Z
J�

	�
�(t; �)w�(t)	�(t; �)dt �

(
1

2=�
P�(I� �K�

�(�)K�(�))P�; =� > 0;
�1
2=�

P�(I� �K�
�(�)K�(�))P�; =� < 0;

(4.12)

with J� being such �nite intervals that J� � (a; c), J+ � (c; b).
Conversely, suppose that for the operator functions K�(�) = K�

�(
��) that

depend analytically on nonreal � the relations (4.9), (4.11), (4.12) hold. Then

K�(�) are strict contractions and P(�) (4.10) is a c.p. of (0.1) (4.8) on (a; b).

P r o o f. Let P(�) be a c.p. of (0.1), (4.8) on (a; b). Then, in view of Cor. 3.1,

condition (3.1) with F = H for I = I� and [25, p. 71] (or (1.69) (or Lem. 2.4),

Th. 2.4), the subspaces

H�(�) = (I �P(�))H; H+(�) = P(�)H (4.13)

are respectively maximal uniformly �=�G-positive and maximal uniformly

�=�G-positive for nonreal �. Therefore [24, p. 100], [25, Ch. I, � 8] there exist

unique strict contractions K�(�) (4.9) such that

H�(�) =

(
�(c)fP�f �K�(�)P�f jf 2 Hg; =� > 0;

�(c)fP�f �K�(�)P�f jf 2 Hg; =� < 0:
(4.14)
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Thus (4.10) is valid for P(�). Substitute (4.10), (4.11) into (3.5) (with �0
being replaced by �) to get (4.12).

Prove that K�(�) = K�
�(

��) and depends on a nonreal � analytically. Intro-

duce the notation Hc(�) = Pc(�)H, with

Pc(�) =

(
�(c)P+�

�1(c); =� > 0

�(c)P��
�1(c); =� < 0:

(4.15)

By [25, p. 76] one has

H = Hc(�)
:

+H+(�):

Denote by P+(�) the projection onto H+(�) parallel to Hc.

By (3.6)

P+(�) = G�1(I �P�+(
��)))G; (4.16)

and, obviously

P+(�) =

(
�(c)(P� +K+(�)P�)�

�1(c); =� > 0;

�(c)(P+ +K+(�)P+)�
�1(c); =� < 0:

(4.17)

Compare (4.8), (4.16), (4.17) to observe thatK+(�) = K�
+(

��). By Th. 4.1 the ope-
rator function P+(�) is a c.p. on (c; b), hence it depends analytically on a nonreal

�. Thus K+(�) depends analytically on nonreal � in view of (4.17).

The same properties for K�(�) can be proved in a similar way.

Conversely, suppose that (4.9), (4.11), (4.12) are valid for the operator func-

tions K�(�) = K�
�(

��) that depend analytically on a nonreal �. In view of condi-

tion (1.3) with F = H for I = I�, one can easily deduce from (4.12) that

9Æ1 = Æ1(�) > 0 :

(
8f 2 P�H : ((I� �K�

�K�)f; f) � Æ1kfk
2; =� > 0;

8f 2 P�H : ((I� �K�
�K�)f; f) � Æ1kfk

2; =� < 0:

It follows that (4.10) determines an operator P(�) 2 B(H) which depends

analytically on a nonreal �. Thus (4.12), (4.11) imply (3.5), (�0 = �) and so

(1.68) (by (9) of [1]) with P(�) as in (4.10). Consider the operator P+(�) (4.17)
together with its analogue P�(�) for (b; c), which are obviously projections. Since

P�(�) satis�es relations similarly to (4.16), it follows from (3.6), (3.7) that such

a relation is valid for P(�). Hence P(�) is a c.p. in view of Th. 1.1, Cor. 3.1 and

Th. 3.1. The Theorem 4.2 is proved.

We call the operator functions K�(�) = K�
�(

��), K+(�) = K�
+(

��) (4.9), which
depend analytically on a nonreal �, and which satisfy (4.12), (4.11), the Weyl
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functions of (0.1), (4.8) on (a; c) and on (c; b) respectively (by a similarity to

[13]�[17])?. We call the corresponding solutions  �(t; �) = 	�(t; �)
��
P�H and

 +(t; �) = 	+(t; �)
��
P�H (�=� > 0) the Weyl solutions of (0.1), (4.8) on (a; c)

and on (c; b) respectively.

Theorem 4.3. Suppose that the interval (a; b) is �nite and the operator func-

tions K�(�) and K+(�) are the Weyl functions of (0.1), (4.8) on (a; c) and on

(c; b), respectively. Then there exist unique contractions U�(�) = U��(
��) that

depend analytically on a nonreal � and such that:

U�(�) 2 B(P�H; P�H); =� > 0; U�(�) 2 B(P�H; P�H); =� < 0; (4.18)

P�K�(�)P+ = P��
�1(c)(I ���(�))�(c)P+ (=� > 0);

P+K�(�)P� = P+�
�1(c)(I ���(�))�(c)P� (=� < 0);

(4.19)

P+K+(�)P� = P+�
�1(c)�+(�)�(c)P� (=� > 0);

P�K+(�)P+ = P��
�1(c)�+(�)�(c)P+ (=� < 0);

(4.20)

with

I ���(�) =

=

8>>>><
>>>>:

X�1
�

(a)�(a)(P+ + U�(�)P+)(X
�1
�

(a)�(a)(P+ + U�(�)P+)� P��(c))
�1;

=� > 0;

X�1
�

(a)�(a)(P� + U�(�)P�)(X
�1
�

(a)�(a)(P� + U�(�)P�)� P+�(c))
�1;

=� < 0;

(4.21)

�+(�) =

=

8>>>><
>>>>:

X�1
�

(b)�(b)(P� + U+(�)P�)(X
�1
�

(b)�(b)(P� + U+(�)P�)� P+�(c))
�1;

=� > 0

X�1
�

(b)�(b)(P+ + U+(�)P+)(X
�1
�

(b)�(b)(P+ + U+(�)P+)� P��(c))
�1;

=� < 0:

:

(4.22)

(In (4.22), (4.21) one has (:::)�1 2 B(H)). The operators ��(�) and �+(�) are
c.p. of (0.1) on (a; c) and on (c; b), respectively, and x�(t) (1.9), (1.20), (4.10)

?Note that in view of no5o of Th. 1.1 the validity of inequalities (4.11), (4.12) for arbitrary

K�(�) (4.9) in one of the complex half-planes implies validity of their analogs in another half-

plane if one sets up K�(��) = K
�
�(�).
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is a solution of the boundary-value problem (0.1), (1.14) with

M� =

(
�(a)(P+ + U�(�)P+); =� > 0;

�(a)(P� + U�(�)P�); =� < 0;

(4.23)

N� =

(
�(b)(P� + U+(�)P�); =� > 0;

�(b)(P+ + U+(�)P+); =� < 0:

Conversely, suppose that (4.18) holds for the contractions U�(�) = U��(
��)

depending analytically on a nonreal �. Then the operators (:::)�1 2 B(H) in

(4.22), (4.21) and operators (4.19), (4.20), associated to (4.22), (4.21), are the

Weyl functions of (0.1) on (a; c) and (c; b), respectively.

P r o o f. Let K+(�) be a Weyl function of (0.1), (4.8) on (c; b). Then, as

one can observe from the proof of Th. 4.2, P+(�) (4.17) is a c.p. of (0.1), (4.8)

on (c; b). Therefore the subspace X�(b)P+(�)H is maximal �=�Q(b) nonpositive
by Cor. 3.1, [25, p. 71] (or (1.69) (or Lem. 2.4), Th. 2.4), Lem. 2.6. Hence [24,

p. 100], [25, Ch. I, � 8] there exists such a unique contraction U+(�) (4.18) that

X�(b)P+(�)H =

(
�(b)(P� + U+(�)P�)H; =� > 0;

�(b)(P+ + U+(�)P+)H; =� < 0:
(4.24)

Since by (1.1) and Remark 3.2

P�+(
��)X�

��
(b)Q(b)X�(b)P+(�) = 0;

and hence one has U(�) = U�(��).
Consider the boundary-value problem (0.1), (4.8), (1.14) on (a; b) = (c; b) with

M� = Pc(�)�(c) with Pc(�) (4.15), N (�) (4.23).
It satis�es all the assumptions of Remarks 1.1, 3.3 by Cor. 2.1 (except analy-

ticity for N (�) so far). Thus projection (3.8) associated with the above problem

is just �+(�) (4.22). On the other hand,

�+(�)H =

(
X�1

�
�(b)(P� + U+(�)P�)H; =� > 0

X�1
�

�(b)(P+ + U+(�)P+)H; =� < 0
= P+(�)H;

(I ��+(�))H = (I �P+(�))H

by (4.24), (4.17). Hence P+(�) = �+(�), which, together with (4.17), implies

(4.20).

Analyticity for U+(�) = U�+(
��) is deducible from the fact that with =� > 0,

�(c)(P� + U+(�)P�)�
�1(c) = Y�(b)P+(�)(Y�(b)P+(�) + Pc(�))

�1;
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where (:::)�1 2 B(H), Y�(t) see Lem. 1.2. The claims related to K�(�), U�(�)
can be proved in a similar way.

Use (4.24) and its analogue for the endpoint a to deduce that x�(t) (1.9),

(1.20), (4.10) is a solution of the boundary-value problem (0.1), (1.14), (4.23).

Conversely, suppose that a contraction U+(�) = U�+(
��) which depends ana-

lytically on a nonreal �, satis�es (4.18). By Remarks 1.1, 3.3, a c.p. of problem

(0.1), (4.8), (1.14) on (a; b) = (c; b) withM� = Pc(�)�(c);N� (4.23) is just �+(�)
(4.22). Hence (see the proof of Th. 4.2) there exists the Weyl function K+(�) of
(0.1), (4.8) on (c; b) such that �+(�) = P+(�) (4.17) ) (4.20), (4.22) for K+(�).
The statements related to U�(�) can be proved in a similar way. The Theorem 4.3

is proved.

Theorem 4.4. Let P(�) be a c.p. of (0.1), (4.8) on (a; b) = (c; b). Then there

exist the unique Weyl function K+(�) of this equation on (c; b) and the unique

contraction U�(�) = U��(
��) (4.18) which depends analytically on a nonreal �,

such that

P(�) =

8>>>><
>>>>:

�(c)(P� +K+(�)P�)(I� � U�(�)K+(�))
�1(P� � U�(�)P+)�

�1(c);

=� > 0;

�(c)(P+ +K+(�)P+)(I+ � U�(�)K+(�))
�1(P+ � U�(�)P�)�

�1(c);

=� < 0;

(4.25)

and for any H-valued vector function f(t) 2 L2
w�

(c; b) with compact support the

solution of (0.1), (4.8) x�(t) (1.9), (1.20), (4.25) satis�es at c the following boun-
dary condition:

9h = h(f; �) : y(c) =M�h; (4.26)

with M� as in (4.23).

Conversely, let K+(�) be an arbitrary Weyl function of (0.1), (4.8) on (c; b)
and U�(�) = U��(

��) (4.18)be an arbitrary contraction that depends analytically

on nonreal �. Then (4.25) is a c.p. of (0.1), (4.8) on (c; b).

P r o o f. Let P(�) be a c.p. of (0.1), (4.8) on (c; b). Thus by Th. 3.1

and Cor. 3.1, (3.5) is valid with a = c and �0 being replaced by any nonreal �.

Therefore the subspaces H�(�) (4.13) and H+(�) (4.13) are maximal and =�G-

nonnegative and uniformly negative, respectively. Hence [24, p. 100], [25, Ch. I,

� 8] there exist the unique contraction U�(�) (4.18) and the unique strict con-

traction K+(�) (4.9) such that (4.14) holds with K�(�) being replaced by U�(�).
Thus P(�) satis�es (4.25), whence (4.26). Substitute (4.25) into (3.5) (with �0
being replaced by �) to deduce that K+(�) satis�es (4.12). The proof of relations
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K+(�) = K�
+(�), U�(�) = U��(

��) goes through like that of the similar relations

for K�(�) in Th. 4.2.

Analyticity for K+(�) and U�(�) follows by Lem. 3.1 from

P+(�) = P(�)(P(�) + Pc(�))
�1; (4.27)

�(c)(P+ + U�(�)P+)�
�1(c) = (I �P(�))(I �P(�) + I � Pc(�))

�1; =� > 0;

respectively, with P+(�) as in (4.17), Pc(�) as in (4.15), and (:::)�1 2 B(H).
Conversely, let K+(�) be the Weyl function of (0.1), (4.8) on (c; b) and

U�(�) = U��(
��) (4.18) be a contraction that depends analytically on a nonreal �.

Then (4.25) determines the operator P(�) 2 B(H) which is a c.p. in view of proof

of Th. 4.2 and M�
��
GM� = 0. The Theorem 4.4 is proved.

Lemma 1.3 and the proof of Th. 4.2 imply

Remark 4.2. K+(�) (4.9) is a Weyl function of (0.1), (4.8) on (c; b) if and

only if P+(�) (4.17) is a c.p. of this equation on (c; b). This c.p., hence also

K+(�), can be derived from the c.p. P(�) (4.25) using (4.27), (4.15).

Remark 4.3. Let P(�) be a c.p. of equation (0.1), (4.8) on (c; b) (hence

P(�) admits representation (4.25)), and with a nonreal � = �0 and any H-valued

vector functions f(t) 2 L2
w�0

(c; b) with the compact support for solutions x�0(t)

(1.9), (� = �0) of this equation corresponding to M(�0) (1.20), (4.25), (� = �0)

one has

lim
�"b

U [x�0(�)] = 0: (4.28)

Then inequality (4.12) for the solution 	+(t; �0) (4.11) becomes an equality with

� = �0 and J+ being replaced by (c; b)?.
Conversely, let K+(�) be the Weyl function of (0.1), (4.8), and suppose that

for some nonreal � = �0 and the associated solution 	+(t; �0) (4.11) of (0.1),

(4.8) on (c; b), inequality (4.12) becomes the equality with J+ being replaced by

(c; b)?. Let the contraction U�(�) satis�es (4.18), (� = �0). Then with � = �0
and any H-valued vector functions f(t) 2 L2

w�0
(c; b) with compact support, (4.28)

holds for solutions x�0(t)(1.9), (1.20), (4.25), (� = �0).

P r o o f. Assume for certainty =�0 > 0. It follows that one can use vector

functions of the form (1.75) with compact support to deduce from (4.28) that

s� lim
�"b

U [X�0
(�)P(�0)] = 0: (4.29)

?Where
bR

c

= s� lim
J+"(c;b)

R

J+

.
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Therefore it is easy to conclude from (4.27) that

s� lim
�"b

U [X�0
(�)P+(�0)] = 0; (4.30)

with P+(�) being as in (4.17). On the other hand, by (1.77) and formula (9) from

[1] one has

P�+(�0)��0
(c; �)P+(�0) =

1

2=�0
(U [X�0

(�)P+(�0)]� U [X�0
(c)P+(�0)]) (4.31)

whence in view of (4.17),

�Z
c

	�
+(t; �0)w�0

(t)	+(t; �0)dt

=
1

2=�0

�
P�(I� �K�

+(�0)K+(�0))P� + U [X�0
(�)P+(�0)�(c)]

�
; (4.32)

so that the equality in (4.10) with � = �0 and J+ being replaced by (c; b), is
proved by a virtue of (4.30).

Conversely, suppose that the relation just proved is true. Then (4.32), (4.31)

imply (4.30), hence in view of (4.25) one has also (4.29), which implies (4.28).

The Remark 4.3 is proved.

As the consequence of Th. 4.3 proof, [35, p. 210], Remark 4.1, Lemmas 3.1,

3.2 we have

Remark 4.4. Let P(�) be a c.p. of equation (0.1), (4.8) on (c; b). Then

condition (4.28) implies the similar condition for � such that =�=�0 > 0, if

b <1 or if H�(t) = H0(t) + �H(t), H0(t) = H�
0 (t).

The statements, which are similar to Th. 4.4, Remarks 4.2�4.4 hold for the

interval (a; c).
Classes of equations (0.1) such that with dimH <1 (4.28) holds for any c.p.,

are described in [38, 39].

We illustrate below Ths. 4.2�4.4 in three basic cases. To simplify notation

assume that =� > 0.

I. Let H = H1 � H2, Q(t)

�
I1 0
0 �I2

�
, with Ij; j = 1; 2 being the identity

operators in Hj.

In this case one has

� = I; P+ =

�
I1 0
0 0

�
; P� =

�
0 0
0 I2

�
;
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and the Weyl functions K+(�) 2 B(H2;H1), K�(�) 2 B(H1;H2) (contractions
U�(�) act in a similar way). Therefore

P� +K+(�)P� =

�
0 K+(�)
0 I2

�
;

P� �K�(�)P+ =

�
0 0

�K�(�) I2

�
;

hence the projection P(�) (4.10) in Th. 4.2 is just

P(�) =

�
K+(�)
I2

�
(I2 �K�(�)K+(�))

�1(�K�(�); I2);

and the projection P(�) (4.25) in Th. 4.4 is given by

P(�) =

�
K+(�)
I2

�
(I2 � U�(�)K+(�))

�1(�U�(�); I2):

The Weyl solutions are given by

 �(t; �) =

�
x1(t; �) + x2(t; �)K�(�)
x3(t; �) + x4(t; �)K�(�)

�
;  +(t; �) =

�
x1(t; �)K+(�) + x2(t; �)
x3(t; �)K+(�) + x4(t; �)

�

with

x1(t; �) 2 B(H1); x2(t; �) 2 B(H2;H1);

x3(t; �) 2 B(H1;H2); x4(t; �) 2 B(H2);�
x1(t; �) x2(t; �)
x3(t; �) x4(t; �)

�
= X�(t): (4.33)

The inequalities (4.12) are equivalent toZ
J�

 ��(t; �)w�(t) �(t; �)dt �
1

2=�
(I� �K�

�(�)K�(�)); I+ = I1; I� = I2:

The operators (4.19), (4.20) from Th. 4.3 are given by

P�K�(�)P+ =

�
0 0

K�(�) 0

�
; P+K+(�)P� =

�
0 K+(�)
0 0

�
;

with the Weyl functions K�(�), by a virtue of (4.22), (4.21), being (in the case

dimH <1 cf. [8])

K�(�) = �(x�2(a;
��)� x�4(a;

��)U�(�))(x
�
1(b;

��)� x�3(b;
��)U�(�))

�1; (4.34)

K+(�) = �(x�1(b;
��)U+(�)� x�3(b;

��))(x�2(b;
��)U+(�)� x�4(b;

��))�1; (4.35)
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(in (4.34) (:::)�1 2 B(H1); in (4.35) one has (:::)�1 2 B(H2)).
II. Let

H = H1 �H1 = H2
1; Q(t) =

�
0 iI1

�iI1 0

�
: (4.36)

In this case one has

� = I; P� =
1

2i

�
I1
�iI1

�
(iI1;�I1):

It is easy to see that the following representations are valid

P�K�(�)P� =
1

2i

�
�ik�(�)
k�(�)

��
iI1;�I1

�
;

with k�(�) being strict contractions in H1, so the projection P (4.10) in Th. 4.2

is given by

P(�) =
1

2i

�
I1 + ik+(�)
iI1 + k+(�)

�
(I1 � k�(�)k+(�))

�1(iI1 � k�(�); I1 � ik�(�));

(4.37)

and inequalities (4.12) in Th. 4.2 are equivalent to

Z
J�

�
I1 � ik�(�)
�iI1 + k�(�)

��
X�

�
(t)w�(t)X�(t)

�
I1 � ik�(�)
�iI + k�(�)

�
dt

�
1

=�
(I1 � k��(�)k�(�)): (4.38)

If one passes in (4.37), (4.38) from strict contractions k�(�) to the Nevanlinna
operator functions

�m�(�) = �(�iI1 + k�(�))(I1 � ik�(�))
�1; �=m�(�) >> 0;

and takes into account that

m�(�)�m+(�) = 2i(�I1 + ik�(�))
�1(I1 � k�(�)k+(�))(I1 + ik+(�))

�1;

then projection (4.37) acquires the following form known from [1]:

P(�) =

�
I1

m+(�)

�
(m�(�)�m+(�))

�1(m�(�);�I1); (4.39)
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and inequalities (4.38) becomeZ
J�

 ��(t; �)w�(t) �(t; �)dt � �
=m�(�)

=�
; (4.40)

with

 �(t; �) =

�
x1(t; �) + x2(t; �)m�(�)
x3(t; �) + x4(t; �)m�(�)

�
: (4.41)

In a similar way, the projection P (4.25) in Th. 4.4 is given by

P(�) =
1

2i

�
I1

m+(�)

�

�(I1 + ik+(�))(I1 � u�(�)k+(�))
�1(iI1 � u�(�); I1 � iu�(�)); (4.42)

with u�(�) being the contraction in H1 that depends analytically on �.

Take into account that

2i(I1 � u�(�)k+(�))(I1 + ik+(�))
�1 = iI1 � u�(�) + (I1 � iu�(�))m+(�)

and denote u(�) = �iu�(�)

a1(�) = �i(u(�) + I1); a2 = u(�)� I1; (4.43)

to observe that the projection P(�) (4.25), (4.42) acquires the form

P(�) =

�
I1

m+(�)

�
(a2(�)� a1(�)m+(�))

�1(a2(�);�a1(�)): (4.44)

Thus in boundary condition (4.26) we can set

M� =

�
a1(�) 0
a2(�) 0

�
:

We follow terminology of [13]�[17] by calling the operators m�(�) 2 B(H1)
and m+(�) 2 B(H1) that depend analytically on � and satisfy (4.40), (4.41),

the Weyl functions of (0.1), (4.36) on (a; c) and (c; b), respectively.
Formula (4.39) indicates that de�nition of the Weyl functions in this work is

equivalent to that of [1]?.

?In [1] m�(�) are denoted by n�(�).
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Remark 4.5. (In the case dimH < 1 cf. [8]). Suppose the interval (a; b)
is �nite. Then the operators m�(�) 2 B(H1) and m+(�) 2 B(H1) are the Weyl

functions of (0.1), (4.36) on (a; c) and on (c; b), respectively if and only if they

admit the representation

m�(�) = (x�1(a;
��)a2(�)� x�3(a;

��)a1(�))(x
�
4(a;

��)a1(�)� x�2(a;
��)a2(�))

�1;

(4.45)

m+(�) = (x�1(b;
��)b2(�)� x�3(b;

��)b1(�))(x
�
4(b;

��)b1(�)� x�2(b;
��)b2(�))

�1; (4.46)

with xj(t; �) 2 B(H1) see (4.33),

a1(�) = �i(U(�) + I1); a2 = U(�)� I1; (4.47)

b1(�) = V (�)� I1; b2 = �i(V (�) + I1); (4.48)

U(�), V (�) being arbitrary contractions in H1 (the latter assumption guaranties

that in (4.45), (4.46) one has (:::)�1 2 B(H1)) that depend analytically on �.

In this setting solution of (0.1), (4.36) x�(t) (1.9), (1.20), (4.39), (4.45),

(4.46) is a solution of the boundary-value problem (0.1), (1.14) with

M� =

�
a1(�) 0
a2(�) 0

�
; N� =

�
0 b1(�)
0 b2(�)

�
;

aj(�), bj(�) 2 B(H1), see (4.47), (4.48).

Remark 4.6. 10 (cf. Remark 4.1). One can choose the contraction u(�) in

(4.43) so that in (4.43) one has a�11 2 B(H1), and a2(�)a
�1
1 (�) = m�(�) is an

arbitrary Weyl function of (0.1), (4.36) on (a; c). Under this choice of u(�) the

projections (4.44), (4.39) coincide, hence M(�) (1.20), (4.44) is also a charac-

teristic operator of (0.1), (4.36) on (a; b).
20. If in (4.43) u(�) is unitary (hence by [35, p. 210] u(�) = u does not

depend on �), then the operators a1, a2 admit the representation (cf. [33])

a1 = cos� �K; a2 = sin� �K;

with � = �� 2 B(H1);K = �2ie�i�, and the projection (4.44) can be written in

the form

P(�) =

�
I1

m+(�)

�
(sin�� cos�m+(�))

�1(sin�;� cos�)

with (:::) 2 B(H1).

In de�nition (1.9), (1.10) of c.o. (0.1), (4.36) the operator solution X�(t) is
often replaced by

X�(t; �) = X�(t)

�
sin� cos �
� cos � sin�

�
;

with � = �� 2 B(H1).
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Remark 4.7. (In the case dimH = 2 cf. [17]). Suppose that the operators

�; � commute. Then, if one replaces in the de�nition of c.o. of (0.1), (4.36)

the operator solution X�(t) by X�(t; �), the characteristic projection P(�) from

n020 of Remark 4.6 turns into the characteristic projection

P�(�) =

�
I1

m+(�; �)

�

�(sin(�� �) + cos(�� �)m+(�; �))
�1(cos(�� �); sin(�� �)); (4.49)

with a new Weyl function m+(�; �) being related to the Weyl function m+(�)
as follows:

m+(�; �) = (cos � + sin�m+(�))(sin� � cos�m+(�))
�1 (4.50)

(in (4.49), (4.50) one has (:::)�1 2 B(H)).

We are about to demonstrate that the Weyl functions m�(�) are analogues of
the Weyl functions of Dirac and Sturm�Liouville equations, as well as analogues

for characteristic matrix of a scalar symmetric di�erential operator of even order

on the semiaxis.

In the case of the Dirac type homogeneous equation (0.1), (4.36) when the

weight =w�(t) = I, i.e., for the equation�
0 �I1
I1 0

�
x0(t) +H0(t)x(t) = �x(t); (4.51)

with H0(t) = H�
0 (t) 2 B(H), the inequalities (4.40) are equivalent to the inequa-

lities as follows:Z
J�

�
(x1(t; �) + x2(t; �)m�(�))

�(x1(t; �) + x2(t; �)m�(�))

+(x3(t; �) + x4(t; �)m�(�))
�(x3(t; �) + x4(t; �)m�(�))

�
dt � �

=m�(�)

=�
; (4.52)

i.e., m�(�) (or m
�1
� (�)) are operator analogues of the scalar Weyl functions for

the Dirac equation (see, e.g., [13], [17]).

One has a di�erent but equivalent to (4.51) form of the Dirac equation, which

is commonly used:

i

�
I1 0
0 �I1

�
y0(t) + ~H0(t)y(t) = �y(t); (4.53)

with ~H0(t) = 2S��1H0(t)S
�1, S =

�
I1 iI1
iI1 I1

�
.
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In this case inequalities (4.52) are equivalent to the claim that for the operator

solutions

 �(t; �) = F (t) +G(t)m�(�) 2 B(H1;H
2
1)

of (4.53), where F (t); G(t) 2 B(H1;H
2
1) are such operator solutions of (4.53) that

fF (0); G(0)g = S, i.e., F (0) =

�
I1
iI1

�
; G(0) =

�
iI1
I1

�
2 B(H1;H

2
1), the following

inequalities hold Z
J�

 ��(t; �) �(t; �)dt � �
2=m�(�)

=�
:

Consequently, m�(�) are also operator analogues of the Weyl functions

for the Dirac equation of the form (4.53), considered for the case dimH = 2 in

the work by V.A. Marchenko [15].

In the case when H1 = Hn

2 and the weight given by w�(t) = diag(I2; O2; ::; O2)
(in particular, a symmetric equation of an arbitrary even order 2n in H2 (e.g.,

the Sturm�Liouville equation) reduces to equation (0.1), (4.36) with such weight),

inequalities (4.40) are equivalent toZ
J�

[(x1(t; �); : : : ; xn(t; �)) + (xn+1(t; �); : : : ; x2n(t; �))m�(�)]
�

�[(x1(t; �); : : : ; xn(t; �)) + (xn+1(t; �); : : : ; x2n(t; �))m�(�)]dt � �
=m�(�)

=�
;

with xj(t; �) = x1j(t; �) being the �rst line operator elements of the operator

matrix X�(t) = (xij(t; �))
2n
i;j=1; xij(t; �) 2 B(H2). That is, the operators m�(�)

(or m�1
� (�)) are analogues of the Weyl functions of the Sturm�Liouville equation

[13]�[15], [17], as well as an operator analogue of characteristic matrix [40] for the

scalar symmetric equation of even order 2n on the semiaxis.

III. Let

H = H1 �H1; Q(t) =

�
0 I1
I1 0

�
: (4.54)

This case reduces to the case II since�
I1 0
0 iI1

��
0 iI1

�iI1 0

��
I1 0
0 �iI1

�
=

�
0 I1
I1 0

�
:

In particular, (4.40), (4.46) in the case (4.54) turns to the inequalities obtained

for the case dimH < 1 in [16, p. 337] for the Weyl type solutions of equation

x0(t) = i�

�
0 I1
I1 0

�
H(t)x(t) with t 2 I+, 0 � H(t) 2 B(H),

R
l

c
H(t)dt >> 0 for

some l 2 �I+:
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