5. Висновки

Метод відеоспостереження дозволяє проводити обстеження інтенсивності обміну транспортних засобів з мінімальними витратами ресурсів, як матеріальних так і людських. Багаторазова обробка відеоматеріала дозволяє досягти високої точності результатів.

За допомогою дисперсійного аналізу було визначено, що процес короткочасного паркування автомобілів не залежить від годин доби, протягом періоду обстеження з 8⁰⁰ до 19⁰⁰. Це пояснюється тим, що процес накопичення автомобілів на узбіччі займає малий проміжок часу, а ступінь заповнення місць паркування має незначні коливання на протязі періоду обстеження.

По одержаним сукупностям кількості прибуваючих та від'їжджаючих автомобілів, було визначено, що вони добре описуються законом розподілу Пуассона, але розходження у параметрі закону λ для прибуття та відправлення автомобілів (1,0597 та 1,00746) викликають необхідність додаткових досліджень цих процесів.

Література

- Лобанов Е.М. Транспортное планирование городов. Учебное издание. "Транспорт " 1990. – 236с.
- Осєтрін М.М., Стельмах О.В. Особливості автомобілізації міст України. // Науково технічний збірник КНУ-БА. – Київ: КНУБА. – 2000.
- Лозе Д., Моделирование транспортного предложения и спроса на транспорт для пассажирского и служебного транспорт – обзор теории моделирования // Сборник докладов 7-й междунар. конф. «Организация и безопасность дорожного движения в крупных городах». – СПб: СПб гос. архит. - строит. ун-т. - 2006. - 170 – 186с.
- Минько А.А. Статистический анализ в MS Excel. : Издательство дом "Вильямс", 2004. – 448с.

УДК 681.30001.571

МНОГОУРОВНЕВОЕ ДИСКРЕТНОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ

И.Г. Филиппенко Доктор технических наук*

> О.Е. Пенкина Аспирант*

О.И. Филиппенко

Кандидат технических наук* *Украинская государственная академия железнодорожного транспорта пл. Фейербаха, 7, г. Харьков, Украина, 61050

Предложена математическая и компьютерная модель многоуровневого ДПФ. Проведено имитационное моделирование процесса вычисления многоуровневого ДПФ, позволившее выяснить закономерность точности вычисления ДПФ в зависимости от числа уровней многоуровневого ДПФ

1. Введение

Роль анализа Фурье в прикладной математике и в технических науках очень важна. Наш интерес лежит в использовании дискретного преобразования Фурье (ДПФ) в технических науках, в частности в цифровой обработке сигналов в системах управления. Винеровская теория предсказания и управления показывает, что оптимальный фильтр или система контроля могут быть рассчитаны при условии, что известны спектры, характеризующие сигнал и шум в системе. Особый интерес представляет оценка этих спектров по временным рядам конечной длины. Анализ взаимных спектров используется для оценки коэффициента усиления и сдвига фазы линейной системы.

Реализация ДПФ осуществляется на универсальных и специализированных процессорах цифровой обработки сигналов (ЦОС). Основные ошибки вычисления ДПФ в ЦОС связаны с типом используемой арифметики [1]. Это: ошибка квантования, вызванная представлением входных данных временного ряда ограниченным числом битов; ошибка квантования коэффициентов, которая возникает при представлении коэффициентов конечным числом битов; ошибки переполнения, к которым может приводить сложение двух больших чисел одного знака, если в результате получится число, превышающее разрешенную длину слова; ошибки округления, которые возникают, когда результат умножения округляется до ближайшего дискретного значения или приемлемой длины слова.

Цель данной работы – предложить метод преобразования ДПФ к виду, позволяющему понизить его вычислительную сложность путем исключения операции умножения.

2. Постановка задачи

Известно [2], что любая непрерывная функция x(t), преобразованная в дискретную временную последовательность $\mathbf{X} = [x_0 x_1 ... x_{N-1}]$, может быть приближенно представлена следующим рядом Фурье

$$\begin{split} \tilde{\mathbf{x}}_{i} \Big|_{i=[0,N-1]} &= \\ &= \frac{\mathbf{a}_{0}}{2} + \sum_{k=1}^{M-1} [\mathbf{a}_{k} \cos(2\pi \mathbf{k} \mathbf{f}_{i} \mathbf{i} \mathbf{T}) + \\ &+ \mathbf{b}_{k} \sin(2\pi \mathbf{k} \mathbf{f}_{i} \mathbf{i} \mathbf{T})], \end{split}$$
(1)

где N – число точек отсчета временной последовательности; X, M - число констант a_k и b_k , которые определяются так, чтобы дискретные и непрерывные значения совпадали в точках t = iT, где t – непрерывное время; T – период квантования по времени; k- номер гармоники; f₁- частота первой гармоники, которая задается как 2π /NT.

В матричной форме преобразования Фурье коэффициенты а_k и b_k определяются как

$$\mathbf{A} = \frac{2}{N} (\mathbf{W} \mathbf{X}^{\mathrm{T}}), \qquad (2)$$
$$\mathbf{B} = \frac{2}{N} (\mathbf{V} \mathbf{X}^{\mathrm{T}}), \qquad (3)$$

где:

$$\mathbf{W} = \begin{bmatrix} W_{0,0} & W_{0,1} & \cdots & W_{0,i} & \cdots & W_{0,N-1} \\ W_{1,0} & W_{1,1} & \cdots & W_{1,i} & \cdots & W_{1,N-1} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ W_{k,0} & W_{k,1} & \cdots & W_{k,i} & \cdots & W_{i,N-1} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ W_{M-1,0} & W_{M-1,1} & \cdots & W_{M-1,i} & \cdots & W_{M-1,N-1} \end{bmatrix},$$
(4)

$$\mathbf{V} = \begin{bmatrix} v_{0,0} & v_{0,1} & \dots & v_{0,i} & \dots & v_{0,N-1} \\ v_{1,0} & v_{1,1} & \dots & v_{1,i} & \dots & v_{1,N-1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ v_{k,0} & v_{k,1} & \dots & v_{k,i} & \dots & v_{i,N-1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ v_{M-1,0} & v_{M-1,1} & \dots & v_{M-1,i} & \dots & v_{M-1,N-1} \end{bmatrix},$$
(5)

 $A = [a_0 a_1 ... a_k ... a_{M-1}]^T$ - вектор a_k коэффициентов,

 $B = [b_0 b_1 ... b_k ... b_{M-1}]^T$ - вектор b_k коэффициентов. Коэффициент b_0 всегда равен нулю.

Коэффициенты $w_{k,i}$ и $v_{k,i}$ определяются следующим образом:

 $w_{k,i} = \cos(2\pi\kappa f_1 iT)$

 $v_{k,i} = \sin(2\pi\kappa f_1 iT)$,

где i = [0, N-1] - отсчет временной последовательности.

Для вычисления ДПФ необходимо выполнить N² операций умножения и N(N-1) операций сложения [4]. Цель работы – предложить метод преобразования ДПФ к виду, позволяющему понизить его вычислительную сложность путем исключения операции умножения,

3. Решение задачи

3.1. Многоуровневое преобразование ДПФ

Для решения поставленной задачи предлагается преобразовать временную скалярную последовательность X в скалярно векторную временную последовательность, представленную матрицей $\hat{\mathbf{X}} = [\hat{\mathbf{X}}_0 \hat{\mathbf{X}}_1 ... \hat{\mathbf{X}}_i ... \hat{\mathbf{X}}_{N-1}]$, где $\hat{\mathbf{X}}_i = \begin{bmatrix} x_{i0} x_{i1} ... x_{ir} ... x_{i(2L-1)} \end{bmatrix}^T$ - вектор столбец, і - индекс точки отсчета временной последовательности, ±L – число уровней скалярно-векторного преобразования (СВП) [2]. Процедура преобразования подробно описана в [3].

Тогда уравнения (2), (3) расчета коэффициенты а_k и b_k примут следующий вид:

$$\mathbf{A} = \frac{2}{N} (\mathbf{W} \hat{\mathbf{X}}^{T}) \mathbf{E}, \qquad (6)$$

$$\mathbf{B} = \frac{2}{N} (\mathbf{V} \widehat{\mathbf{X}}^{\mathrm{T}}) \mathbf{E}, \qquad (7)$$

где матрица $\widehat{\mathbf{X}}$ в развернутом виде записывается как

$$\widehat{\mathbf{X}} = \begin{bmatrix} x_{00} & x_{01} & \dots & x_{0i} & \dots & x_{0(N-1)} \\ x_{10} & x_{11} & \dots & x_{1i} & \dots & x_{1(N-1)} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{r0} & x_{r1} & \dots & x_{ri} & \dots & x_{r(N-1)} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_{(2L-1)0} & x_{(2L-1)1} & \dots & x_{(2L-1)i} & \dots & x_{(2L-1)(N-1)} \end{bmatrix}, \quad (8)$$

Е - единичный вектор столбец размерности N.

Вычисление коэффициентов Фурье по формулам (6) и (7) не только не уменьшает, а наоборот, увеличивает число операций умножения и сложения, по сравнению с вычислением коэффициентов Фурье по формулам (2) и (3).

На помощь приходит тот факт, что "уровневые" временные последовательности, представлены г строками матрицы $\widehat{\mathbf{X}}$ (8).

Множество значений, которое может принимать x_{ri} элемент r строки (8), определяется следующими соотношениями:

$$x_{ri} \in \begin{cases} \{0,1\}, & \text{если } 0 \le r < L. \\ \{0,-1\}, & \text{если } L \le r < 2L. \end{cases}$$
 (9)

Этот факт намного упрощает операцию произведения чисел между собой, т.к. не требуется беспокоиться за переполнение результата переполнения в цифровом устройстве.

Но мы хотим вообще обойтись без операции умножения при вычислении БПФ. Такие формы (6), (7) определения коэффициентов Фурье позволяет вовсе исключить операцию умножения в процессе вычисления коэффициентов. Ниже приведен метод вычисления коэффициентов Фурье без использования операции умножения.

3.2. Метод многоуровневого преобразования ДПФ

Вычисление коэффициентов Фурье предлагается производить по следующим формулам:

$$a_{k|_{k=0.M-1}} = \frac{2}{N} \sum_{r=0}^{2L-1} \sum_{i=0}^{N-1} w_{rki} \left| w_{rki} = \left| \begin{matrix} w_{ki} & \text{если } x_{ri} \neq 0 \text{ для } 0 \leq r < L \\ -w_{ki} & \text{если } x_{ri} \neq 0 \text{ для } L \leq r < 2L \end{matrix} \right|, (10)$$

$$\mathbf{b}_{k|_{k=0.M-1}} = \frac{2}{N} \sum_{r=0}^{2L-1} \sum_{i=0}^{N-1} \mathbf{v}_{rki} \left| \mathbf{v}_{rki} = \left| \begin{matrix} \mathbf{v}_{ki} & \text{если } \mathbf{x}_{ri} \neq \mathbf{0} \text{ для } \mathbf{0} \leq \mathbf{r} < L \\ -\mathbf{v}_{ki} & \text{если } \mathbf{x}_{ri} \neq \mathbf{0} \text{ для } \mathbf{L} \leq \mathbf{r} < 2L \end{matrix} \right. , (11)$$

с использованием только операции сложения w_{rki} и v_{rki} коэффициентов, удовлетворяющих условиям, приведенным в (10) и (11).

Известно [1], что для N-точечного ДПФ требуемое N² операций умножения и N(N-1) операций сложения. Для многоуровневого ДПФ число операций умножения равно нулю, количество операций сравнения равно M·2L·N. Что же касается количества операций сложения, то их количество определяется количеством нулей матрицы $\hat{\mathbf{X}}$ (8), а их количество является случайным числом и зависит от вида исходного временного ряда $\mathbf{X} = [x_0 x_1 ... x_{N-1}]$, но их количество всегда меньше M·2L·N.

Так, для вычисления 8 точечного ДПФ необходимо выполнить $8^2 = 64$ операции умножения и $8 \times 7 = 56$ операций сложения. Для числа уровней L = 16 и N = 100выборок временно́го ряда, являющегося суммой шести гармоник:

$$x_{i}\Big|_{i=0,N-1} = \sin(2\pi i/N) + \sin(2\pi 2i/N) + \sin(2\pi 3i/N) + \\ + \sin(2\pi 4i/N) + \sin(2\pi 5i/N) + \sin(2\pi 6i/N),$$
(12)

для выполнения 8 точечного многоуровневого ДПФ, необходимо выполнить 0 операций умножения, 7×2×16×100 = 22400 операций сравнения и 11914 операций сложения. При этом стандартное отклонение спектральных составляющих составляет 0.0974414.

Если учесть, что w_{ki} и v_{ki} коэффициенты являются константами в памяти цифрового вычислительного устройства, то ни какие коллизии в процессе вычисления, связанные с превышением допустимого диапазона значения действительного числа, не возможны.

Кроме того, исключены операции, связанные с ошибками квантования, вызванные представлением входных данных временного ряда, ошибки квантования коэффициентов, ошибки переполнения и ошибки округления.

При использовании предложенного представления ДПФ в виде многоуровневого ДПФ необходимо помнить, что точность вычисления многоуровневого ДПФ зависит от числа уровней (L) скалярно-векторного преобразования временно́го ряда. Для исследования зависимости точности вычисления многоуровневого ДПФ от числа уровней L была разработана математическая и компьютерная модель процесса вычисления коэффициентов и спектральных составляющих многоуровневого ДПФ.

3.3 Моделирование процесса вычисления многоуровневого преобразования ДПФ

Математическая модель многоуровневого преобразования ДПФ разработана и реализована в виде класса ML_Furie объектно-ориентированного языка C++, наследовавшего ранее разработанные классы классиче-

ского ДПФ и скалярно-векторного преобразования preobrzFurie и ScalVect соответственно (см. рис. 1).

Рисунок 1. Иерархия классов

Конструктор класса ML_Furie многоуровневого ДПФ имеет вид, представленный на листинге 1.

//Параметры конструктора preobrzFurie double w_T, //период квантования по времени double w_f1, //частота первой гармоники int w_M, //количество частот int w_num_k, //номер частоты //параметры конструктора ScalVect enum ApplDefinit w_CurrApp, //тип приложения double w_xmax, //max значение входного сигнала int w_L, //число уровней скалярно-векторного преобразования int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	ML_Furie (
double w_T, //период квантования по времени double w_f1, //частота первой гармоники int w_M, //количество частот int w_num_k, //номер частоты //параметры конструктора ScalVect enum ApplDefinit w_CurrApp, //тип приложения double w_xmax, //max значение входного сигнала int w_L, //число уровней скалярно-векторного преобразования int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	//Параметры конструктора preobrzFurie				
double w_f1, //частота первой гармоники int w_M, //количество частот int w_num_k, //номер частоты //параметры конструктора ScalVect enum ApplDefinit w_CurrApp, //тип приложения double w_xmax, //max значение входного сигнала int w_L, //число уровней скалярно-векторного преобразования int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	double w_T, //период квантования по времени				
int w_M, //количество частот int w_num_k, //номер частоты //параметры конструктора ScalVect enum ApplDefinit w_CurrApp, //тип приложения double w_xmax, //max значение входного сигнала int w_L, //число уровней скалярно-векторного преобразования int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	double w_f1, //частота первой гармоники				
int w_num_k, //номер частоты //параметры конструктора ScalVect enum ApplDefinit w_CurrApp, //тип приложения double w_xmax, //max значение входного сигнала int w_L, //число уровней скалярно-векторного преобразования int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	nt w_M, //количество частот				
//параметры конструктора ScalVect enum ApplDefinit w_CurrApp, //тип приложения double w_xmax, //max значение входного сигнала int w_L, //число уровней скалярно-векторного преобразования int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	int w_num_k, //номер частоты				
enum ApplDefinit w_CurrApp, //тип приложения double w_xmax, //max значение входного сигнала int w_L, //число уровней скалярно-векторного преобразования int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	//параметры конструктора ScalVect				
double w_xmax, //max значение входного сигнала int w_L, //число уровней скалярно-векторного преобразования int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	enum ApplDefinit w_CurrApp, //тип приложения				
int w_L, //число уровней скалярно-векторного преобразования int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnScIVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnScIVect){}	double w_xmax, //max значение входного сигнала				
int w_d, //масштаб выходного сигнала скалярно-векторного //преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	int w_L, //число уровней скалярно-векторного преобразования				
//преобразования nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	int w_d, //масштаб выходного сигнала скалярно-векторного				
nt w_nColnSclVect //число отсчетов временной //последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	//преобразования				
//последовательности N = 1/(f1xT)):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	nt w_nColnSclVect //число отсчетов временной				
):preobrzFurie(w_T, w_f1, w_M, w_num_k), ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}	//последовательности N = 1/(f1xT)				
<pre>ScalVect(w_CurrApp, w_xmax, w_L, w_d, w_nColnSclVect){}</pre>):preobrzFurie(w_T, w_f1, w_M, w_num_k),				

Листинг 1. Конструктор класса ML_Furie многоуровневого ДПФ

Для оценки точности вычисления многоуровневого ДПФ в зависимости от числа уровней СВП необходимо было выбрать критерий оценки точности вычисления. Известно [4], если временной ряд является выборкой суммы М гармоник вида (12), то спектр S(ω) многоуровневого ДПФ будет точной копией истинного спектра многоуровневого ДПФ, представленного на рис. 2.

Рисунок 2. Истинный спектр многоуровневого ДПФ

Тогда в качестве критерия оценки точности вычисления многоуровневого $Д\Pi \Phi$ можно принять стандартное отклонение в виде следующего соотношения:

$$\varsigma(L) = \sqrt{\frac{1}{M} \sum_{\omega=1}^{M} (1 - \tilde{S}(\omega, L))^2},$$

где М - число спектральных составляющих; ω – номер спектральной составляющей; $\tilde{S}(\omega,L)$ – расчетная спектральная составляющая; L – число уровней СВП, и 1 – значение истинного спектра многоуровневого ДПФ (см. рис. 2).

Расчетная зависимость ζ(L) представлена в виде графика, показанного на рис. 3.

Рисунок 3. Стандартное отклонение спектральных составляющих в зависимости от числа уровней СВП

Рассмотрим фрагмент стандартного отклонения спектральных составляющих в диапазоне уровней от 25 до 75, представленный рис. 4.

Рисунок 4. Фрагмент стандартного отклонения спектральных составляющих в диапазоне уровней от 25 до 75

Детальное рассмотрение фрагмента стандартного отклонения спектральных составляющих, представленных на рис. 4 показывает, что функция $\zeta(L)$ (см. рис. 1) не есть монотонно убывающей функцией. Очевидно, что соотношение $\zeta(L + \Delta L) > \zeta(L)$ далеко не всегда справедливо. Для облегчения правильного выбора нужного числа уровней для требуемого значения $\zeta(L)$ были найдены локальные минимумы этой функции для L =[0, 1024], которые приведены в табл. 1.

Таблица 1

L	ζ	L	ζ
0	1	192	0.00675961
4	0.33009	228	0.00588408
8	0.199445	232	0.00564119
12	0.117643	256	0.00527716
16	0.0974414	272	0.00520321
24	0.0532448	280	0.00510686
32	0.0399577	292	0.00440703
44	0.0375222	324	0.00427876
48	0.029383	336	0.00374297
60	0.0245281	376	0.00363764
64	0.0230867	400	0.00331556
72	0.0216328	436	0.00275187
76	0.0214918	464	0.00258336
80	0.0209184	556	0.0024924
84	0.017032	560	0.00226651
96	0.0149883	584	0.00214534
108	0.0120245	668	0.00203443
128	0.0109037	704	0.0016614
144	0.0107599	752	0.00160789
152	0.0103917	912	0.00143896
160	0.00950144	988	0.00139302
168	0.0087133	1024	0.00116005
172	0.00769078		

Таблица локальных минимумов функции ζ(L)

Из анализа рис. З следует, что значение L для требуемого ζ(L) разумно отыскивать в диапазоне L = [4,80]. Локальные минимумы функции ζ(L) в указанном диапазоне показаны на рис. 5.

Рисунок 5. Локальные минимумы функции $\zeta(L)$ в диапазоне L = [4,80]

Кроме того, исследовалась зависимость стандартного отклонения $\zeta(L)$ в зависимости от числа спектральных составляющих (М) и различных значений периодов квантования (Т) временного рядя по времени. Естественно, что при этом наивысшая частота спектральной составляющей не превышала частоту 1/2T гц.

На рис. 6 представлены графики стандартного отклонения в зависимости от числа спектральных составляющих (М) временно́го ряда, 128 уровней СВП и различны значений периода квантования временного ряда по времени (график А для T = 0.01, и график В для T = 0.001).

Рисунок 6. Стандартное отклонение M спектральных составляющих для L = 128: A – T = 0.01; B – T = 0.001

Из анализа рис.6 следует, что чем больше T, тем меньше $\zeta(L)$ и больше число операций сравнения и сложения, необходимых для вычисления многоуровневого ДПФ.

Выводы

- Впервые предложена математическая и компьютерная модель многоуровневого ДПФ.

- Упрощена вычислительная сложность ДПФ путем исключения операций умножения. Но при этом дополнительно вводятся операции сравнения.

- Исключены ошибки, связанные с ошибками квантования, вызванные представлением входных данных временного ряда; ошибки квантования коэффициентов; ошибки переполнения и ошибки округления.

- При помощи имитационного моделирования процесса вычисления многоуровневого ДПФ получены таблицы числовых значений $\zeta(L)$ от L = [4, 1024] из которых можно легко выделить локальные минимумы нужного диапазона L.

- Имитационное моделирование процесса вычисления многоуровневого ДПФ позволяет исследовать ошибки преобразования $\zeta(L)$ для различных константных значений параметров, приведенных в конструкторе класса ML Furie.

 Все вышесказанное справедливо и для многоуровневого ДПФ финитных функций.

Литература

- Алфичер Э.С., Джервис Б. Цифровая обработка сигналов: практический подход. – М: Вильямс, 2008. – 999с.
- Дженкинс Г. Ваттс Д. Спектральный анализ и его приложения. Том І. – М.: Мир, 1971. – 316с.
- Филиппенко О.И. Отказоустойчивость и живучесть нейроавтоматно-сетевых многоуровневых регуляторов // Восточно-Европейский журнал передовых технологий. – 2008. - №5/3 (35). - С. –34-44.
- Применение математических методов и ЭВМ / Останин А.Н. Тюленев В.П., Романов А.В., Петровский А.А. Минск: Вышейшая школа, 1989. 218с.