

Рисунок 5. Гістограма розподілу середніх значень простою вагонів під очікуванням закінчення обробки перевізних документів митною, прикордонною та суміжними службами при застосуванні різної кількості бригад на протязі 48 годин

та прикордонного контролів, склало лише 0,7 %, що дає можливість стверджувати про доцільність залучення саме 2 одночасно працюючих бригад в митній та прикордонній службах.

1. Введение

Для организации взаимодействия нейроавтоматов (НА) нейроавтоматных сетей (НАС) [1] между собой использовалась коммутационная структура, показанная Висновок

Залізниці повинні здійснювати розвиток інфраструктури транспортного забезпечення зовнішньоекономічної діяльності України, підвищувати пропускну і переробну спроможність прикордонних передаточних пунктів, приводити парк рухомого складу і контейнерів, що виходять на іноземну мережу залізниць, у відповідність з міжнародними стандартами і вимогами [3].

Література

1. Управление грузовой и коммерческой работой на железнодорожном транспорте: Учебник / Под ред. А. А. Смехова. — М.: Транспорт, 1990. — 352 с.

УДК 681.30001.571

СТРУКТУРЫ

О. И. Филиппенко кандидат технических наук УкрГАЖТ, г. Харьков

СЕТЕЙ

Ветухов А. Е., Аветикян М. А. 2 Комплексные методы сокращения простоя вагонов. -М.: Транспорт, 1986. — 206 с.

ОДНОРОДНЫЕ

СПОНТАННЫЕ

3. Закон України «Про залізничний транспорт» // Відомості Верховної Ради України, 1996. — № 40.

СТОХАСТИЧЕСКИЕ

ДВУНАПРАВЛЕННЫЕ

КОММУТАЦИОННЫЕ

НЕЙРОАВТОМАТНЫХ

на рис. 1, в задачу которой входила организация поиска межнейроавтоматных связей. В общем случае коммутационные структуры n полюсные. Для удобочитаемости рассматривается четырехполюсная коммутационная структура межнейроавтоматных соединений.

Элементы коммутации $R_i \in \{R_0, R_1, R_2, R_3\}$ будем условно называть «контактами». Они принадлежат входным или выходным НА и находятся в замкнутом состоянии лишь тогда, когда входные НА находятся в состоянии генерации сигнала (ГС), а выходные НА находятся в состоянии приема сигнала (ПС). Входному НА, находящемуся в состоянии ГС, совершенно безразлично с каким из выходных автоматов, находящихся в состоянии ПС, осуществить контакт. В случае, когда все входные НА находятся в состоянии ГС, а выходные НА находятся в состоянии ПС, возможны n! различных соединений. В общем случае число входных НА, находящихся в состоянии ГС, и число выходных НА, находящихся в состоянии ПС, не одинаково. В настоящее время процедура поиска возможных межнейроавтоматных соединений по схеме (рис. 1) осуществляется простым перебором, осуществляемым программным способом. Выход из строя программы перебора приводит к выходу из строя всей коммутационной структуры.

Цель данной работы заключается в разработке компьютерной модели коммутационной структуры, которая бы решала задачу спонтанного поиска проводящих цепей между активированными НА, подключенными к ее входам и выходам; физическая реализация ее может быть осуществима на практике.

2. Условные обозначения и терминология

2.1. Условные обозначения.

ГС — генерация сигнала.

ИСЧПРЗР — интервал случайных чисел, подчиненных равномерному закону распределения.

КА – клеточный автомат.

МООСКС_F — модифицированная однородная ориентированная стохастическая коммутационная структура типа F.

МООСКС_В — модифицированная однородная ориентированная стохастическая коммутационная структура типа В.

НА — нейроавтомат.

НАС – нейроавтоматная сеть.

ОСДСКС — однородная спонтанная двунаправленная стохастическая коммутационная структура.

ООСКС — однородная ориентированная стохастическая коммутационная структура.

ПС — приема сигнала.

СССУ — структурная схема соединений связующих узлов.

СУ — связующий узел.

СУ F – связующий узел ООСКС типа F.

СУ В – связующий узел ООСКС типа В.

nF – число МООСКС F в ОСДСКС.

nB-число МООСКС В в ОСДСКС.

nStrF – число строк решетки МООСКС F.

nStlbF – число столбцов решетки МООСКС F.

nStrB – число строк решетки МООСКС_В.

nStlbB – число столбцов решетки МООСКС В.

IS_F = [a, b] — пределы ИСЧПРЗР МООСКС_F.

IS_B = [c, d] – пределы ИСЧПРЗР МООСКС В.

iF — номер строки начального положения частицы на решетке МООСКС F.

jF — номер столбца начального положения частицы на решетке МООСКС_F.

iB — номер строки начального положения частицы на решетке МООСКС В.

јВ — номер столбца начального положения частицы на решетке МООСКС_В.

N - число испытаний ОСДСКС.

2.2. Терминология. Однородная двунаправленная спонтанная стохастическая коммутационная структура названа спонтанной потому, что образование коммутационных цепей в ней происходит спонтанно (самопроизвольно) и не за счет внешнего воздействия или специально встроенного механизма, а за счет внутренних свойств модифицированных ООСКС, входящих в нее, и связей между ними.

В работе [4] показана адекватность описания процесса образования коммутационных цепей в однородных вероятностных коммутационных структурах процессу случайного блуждания частицы по решетке. ООСКС представляет собой двумерную решетку размерности n×m. В узлах решетки с целочисленными i ∈ [0, n – 1] и j ∈ [0, m – 1] координатами размещены КА. При приведении КА в активное состояние он случайным образом передает свою активность соседствующему с ним КА, а сам переходит в пассивное состояние, сохраняя при этом образовавшуюся коммутационную цепь с соседствующим с ним КА. С каждым шагом частица будет переходить случайным образом в один из разрешенных соседствующих с ней узлов. Условия разрешения описаны в [3-5]. Если проследить траекторию перехода частицы из узла в узел, то можно увидеть образовавшуюся коммутационную цепь [5]. Поэтому в работе будут использоваться терминология, присущая двум различным описаниям процесса образования коммутационных цепей, как взаимодействие КА и как случайное блуждание частицы по решетке.

3. Решение задачи

3.1. Построения однородной спонтанной двунаправленной стохастической коммутационной структуры (ОСДСКС). В работе [3] предложены однородные ориентированные стохастические коммутационные структуры (**OOCKC**), которые позволяют динамически образовывать коммутационные цепи между их входами и выходами. Предлагается их модифицировать и использовать как элементы ОДСКС. Для этого необходимо снабдить клеточные автоматы (**KA**) выходами, направленными перпендикулярно плоскости ООСКС (**рис. 2**), которые в период активности КА соединяются с образовавшейся коммутационной цепью, а в период пассивности отключаются от нее. Далее предложено соединить каждый ряд этих выходов, ориентированными контактными линиями (**рис. 2**). Модифицированная таким образом однородная ориентированная стохастическая коммутационная структура типа F (MOOCKC_F) показана на **рис. 2**.

Сигнал активизации, поступающий от входного НА, запускает процесс образования коммутационной цепи в MOOCKC_F и подает в нее электрический потенциал. Вход X является начальной точкой формирования коммутационной цепи. КА, находящийся в активном состоянии, соединяет образовавшуюся к тому времени коммутационную цепь, с контактной линией. Схематически это происходит через контакт, исходящий от КА

Рисунок 3. Модифицированная ООСКС типа В

к контактной линии. Активный КА, принадлежащий ј-му индексу ј-го измерения, соединяет коммутационную цепь с контактной линией, которая также принадлежит этому же индексу того же измерения. На **рис. 2** индексы ј-го измерения пронумерованы от 0 до 4 включительно. Связующие узлы, предназначенные для поиска активных КА других МООСКС типа В, соединены к выходным концам контактных линий. Максимальные значения i-го и j-го измерений определяют размерность решетки МООСКС_F. Модифицированная однородная ориентированная стохастическая коммутационная структура типа В (МООСКС_В) показана на **рис. 3**.

МООСКС_В также имеет связующие узлы, контактные линии и НА на входе. НА активизирует процесс образования коммутационной цепи в МООСКС_В. В отличие от МООСКС_F в МООСКС_В образовывающаяся коммутационная цепь имеет нулевой потенциал. В модифицированных ООСКС обоих типов в произвольный момент времени только один КА может находиться в активном состоянии. В активном состоянии КА замыкает, образовавшуюся к этому времени коммутационную цепь, с проводящей контактной линией.

Связывающие узлы представляют собой активные

устройства, имеющие вход, селективный выход и процедуру взаимодействия с другими связующими узлами. Структурная схема соединений связующих узлов (СССУ) МООСКС обоих типов, ориентированных в j-ом направлении показана на **рис. 4**.

На **рис.** 4 в фигурных скобках, пронумерованных цифрами 1 и 2, показаны связывающие узлы, которые принадлежат четырем (как пример) МООСКС_F, и четырем МООСКС_B. Связывающие узлы помечены цифрами, которые соответствуют номерам МООСКС_F и МООСКС_В к которым они принадлежат. Связующие узлы соединены токопроводящими линиями, помеченными цифрой 3, от которой исходят две стрелки.

Предложенная однородная спонтанная двунаправленная стохастическая коммутационная структура показана на рис. 5. Она состоит из множества (n-1) МООСКС F, множества (n – 1) МООСКС_В, и ј_{тах} СССУ, имеет n – 1 входов и выходов, к которым присоединены НА, которые могут находиться в активном или пассивном состояниях [1]. НА, присоединенные к входам ОСДСКС, считаются активными, если они находятся в состоянии генерации сигналов. НА, присоединенные к выхо-

Рисунок 4. Структурная схема соединения связующих узлов ООСКС типа F и типа В

дам ОСДСКС, считаются активными, если они находятся в состоянии приема сигналов. Входные и выходные НА, находящиеся в активном состоянии, активизируют процессы образования проводящих цепей [3]. Направление образования проводящих цепей в МООСКС_F и МООСКС_В происходит встречно друг другу. Момент встречи проводящих цепей определяется СССУ.

Пусть, к какому-то моменту времени проводящая цепь, например в МООСКС_F под № 0, достигла j-го уровня. И пусть к этому же моменту времени проводящая цепь в МООСКС_В под № 1 так же достигла j-го уровня. Этот факт обнаружит СССУ, принадлежащая этому же уровню, и произойдет контактное соединение двух проводящих цепей, принадлежащих МООСКС_F под № 0 и МООСКС_В под № 1. Электрический потенциал проводящей цепи МООСКС_F под № 0 передастся проводящей цепи МООСКС_В под № 1. Этот потенциал поступит на вход НА, присоединенного к первому выходу ОСДСКС. В результате приема НА-ом потенциала он выдаст сигнал на разрушение проводящих цепей, по которым этот потенциал был ему передан. В общем случае число активных НА на входах и выходах ОСДСКС может быть как одинаково так и различно. Это число может лежать в диапазоне значений от 0 до п – 1. Процесс «встречи» проводящих цепей МООСКС_F и МООСКС_ В носит случайный характер. Так для n = 3 возможные разновидности образования спонтанных проводящих цепей ОСДСКС показаны на **рис. 6**.

Рисунок 5. Однородная спонтанная двунаправленная стохастическая коммутационная структура

Рисунок 6. Разновидности проводящих цепей в ОСДСКС: nF = nB = 3; 1, 2, 3, 4, 5, 6 наименование разновидностей проводящих цепи

В общем случае в результате случайного спонтанного процесса образования проводящих цепей между входами и выходами ОСДСКС при nF = nB возможны nF! разновидностей соединений.

3.2. Компьютерная модель однородной спонтанной двунаправленной стохастической коммутационной структуры. При описании компьютерной модели ОСДСКС используется терминология, изложенная в подразделе 2.2. ОСДСКС представляет собой множество двумерных массивов МООСКС F и МООСКС В, которые представлены решетками, по узлам которой блуждают предопределенно-случайным образом частицы, имитирующие поведение активных КА. Каждому МООСКС F и МООСКС В поставлены в соответствии по два одномерных массива, предназначенные для хранения состояний КА и необходимого число шагов, которые должна совершить частица в течении глобального шага. Смысл глобального шага заключается в том, что за какой то период времени частица должна совершить столько шагов, сколько ей приписано в соответствующем ранее упомянутом массиве. Перед каждым глобальным шагом число шагов, которые должны совершить частицы, принадлежащие МООСКС F и МООСКС B, выбирается генератором случайных чисел подчиненных равномерному закону распределения в диапазонах IS F и IS В и присваивается соответствующим элементам массивов. Диапазоны IS F и IS В задаются перед началом статистического моделирования (испытания) процесса функционирования ОСДСКС. Период времени совершения глобального шага является случайной величиной. В процессе блуждания частиц по двунаправленным решеткам возможны встречи между частицами, принадлежащими МООСКС F и МООСКС B, и находящимися на одном и том же ј-ом уровне (рис. 5). После каждого (не глобального) одиночного шага частицы происходит процедура поиск возможной встречи частицы с другими частицами по схеме, показанной на рис. 4. Частица считается активной (КА считается активным), если она готова совершить шаг. Если состояние КА равно единицы, тогда считается, что флаг частично поднят, в противном состоянии флаг опущен. Одноразовое моделирование процесса функционирования ОСДСКС заканчивается, когда флаги всех активных частиц придут в опущенное состояние. Все сказанное справедливо для случая, когда число активных входов и выходов ОСДСКС равны между собой и когда не равны. В нейроавтоматных сетях число активных входов и выходов ОСДСКС определяется состояниями НА, присоединенных к ним. Состояние НА является случайной величиной, отсюда следует, что число активных входов и выходов ОСДСКС является случайной величиной.

В процессе функционирования ОСДСКС может сложиться ситуация, когда частица прошагав до «края» решетки (координаты $j = j_{max}$ края) не встретившись ни с какой частицей. Тогда процесс одноразового моделирования никогда не закончится, т. к. флаг частицы (КА) остается поднятым. Поэтому в компьютерной модели ОСДСКС предусмотрен механизм анализа этих состояний, который по достижению частицей граничной точки решетки опускает флаг и обнуляет значение параметра заданного числа шагов, которые должна была совершить частица. Компьютерная модель ОСДСКС содержит еще много дополнительных процедур. Это касается органи-

встречи и ряда других процедур. Компьютерная модель однородной спонтанной двунаправленной стохастической коммутационной структуры реализована на языке СИ++ в виде класса, наследующего классы ООСКС [3].

3.3. Моделирование процесса образования коммутационных цепей в ОСДСКС методом Монте — Карло и обработка результатов моделирования. Компьютерная модель ОСДСКС позволяет получать статистические данные о частоте таких событий как разновидность спонтанных коммутационных цепей (*см.*, например, **рис. 6**), частоте встречи частиц в точках (индексах) j-го измерения и ряда других событий. В **табл. 1** приведен перечень независимых параметров и их условные обозначения. По полученным статистическим данным построены эмпирические распределения случайных событий. Полученные эмпирические распределения легко аппроксимируются известными законами распределения.

зации процедур блуждания частиц по решетке, поиска

Таблица 1

Независимые параметры ОСДСКАС	
и их условные обозначения	

Параметр	Наименование
Число МООСКС_F в ОСДСКС	nF
Число МООСКС_В в ОСДСКС	nB
Число строк решетки МООСКС_F	nStrF
Число столбцов решетки MOOCKC_F	nStlbF
Число строк решетки МООСКС_В	nStrB
Число столбцов решетки МООСКС_В	nStlbB
Пределы ИСЧПРЗР МООСКС_F	IS_F
Пределы ИСЧПРЗР МООСКС_В	IS_B
Номер строки начального положения частицы на решетке МООСКС_F	iF
Номер столбца начального положения частицы на решетке МООСКС_F	jF
Номер строки начального положения час- тицы на решетке MOOCKC_В	iB
Номер столбца начального положения час- тицы на решетке MOOCKC_В	jВ
Число испытаний ОСДСКС	N

На **рис. 7–9** представлены эмпирические распределения разновидностей спонтанных проводящих коммутационных цепей ОСДСКС для параметров, приведенных в вышеуказанных рисунках.

На **рис. 10–12** представлены эмпирические распределения точек встречи КА-ов для параметров, приведенных в вышеуказанных рисунках.

На **рис. 13** представлены эмпирическое распределение разновидностей образования проводящих цепей в ОСДСКС размерностью 2 × 4.

Разновидности образования токопроводящих цепей в ОСДСКС

Рисунок 7. Эмпирическое распределение разновидностей проводящих цепей в ОСДСКС: nF = nB = 2; nStrF = nStrB = 5; nStlbF = nStlbB = 10; $IS_F = = IS_B = [0, 30]$; iF = iB = 2; jF = 0; jB = 9; N = 500

Рисунок 8. Эмпирическое распределение разновидностей образования проводящих цепей в ОСДСКС: nF = nB = 3; nStrF = nStrB = 5; nStlbF = nStlbB = = 10; IS_F = IS_B = [0, 30]; iF = iB = 2; jF = 0; jB = 9; N = 500

Рисунок 9. Эмпирическое распределение разновидностей образования проводящих цепей в ОСДСКС: nF = nB = 4; nStrF = nStrB = 5; nStlbF = nStlbB = = 10; IS_F = IS_B = [0, 30]; iF = iB = 2; jF = 0; jB = 9; N = 500

Рисунок 10. Эмпирическое распределение точек встречи КА МООСКС_F № 1 ОСДСКС: nF = nB = 3; nStrF = = nStrB = 5; nStlbF = nStlbB = 10; IS_F = IS_B = [0, 30]; iF = iB = 2; jF = 0; jB = 9; N = 500

Рисунок 11. Эмпирическое распределение точек встречи КА МООСКС_F № 1 ОСДСКС: nF = nB = 3; nStrF = = nStrB = 5; nStlbF = nStlbB = 20; IS_F = IS_B = [0, 30]; iF = iB = 2; jF = 0; jB = 9; N = 500

На **рис. 14–15** представлены эмпирические распределения точек встречи КА-ов для параметров, указанных в рисунках.

Рисунок 14. Эмпирическое распределение точек встречи KA MOOCKC_F № 1 OCДCKC: nF = 2; nB = 4; nStrF = = nStrB = 5; nStlbF = nStlbB = 10; IS_F = IS_B = [0, 30]; iF = iB = 2; jF = 0; jB = 9; N = 500

На **рис. 16** представлены эмпирическое распределение разновидностей образования проводящих цепей в ОСДСКС размерностью 4×2 .

На **рис. 17–18** представлены эмпирические распределения точек встречи КА-ов для параметров, указанных в рисунках.

3.4. Обсуждение результатов. По результатам анализа эмпирических распределений, полученных на основе моделирования процесса функционирования ОСДСКС методом Монте — Карло, можно сделать следующие заключения.

Вид эмпирических распределений разновидностей образования проводящих цепей в ОСДСКС (рис. 7–9, рис. 13–16) не зависит от:

1) размерности (nF, nB) ОСДСКС;

2) от соотношений nF и nB;

Рисунок 15. Эмпирическое распределение точек встречи KA MOOCKC_B № 1 ОСДСКС: nF = 2; nB = 4; nStrF = = nStrB = 5; nStlbF = nStlbB = 10; IS_F = IS_B = [0, 50]; iF = iB = 2; jF = 0; jB = 9; N = 500

Рисунок 16. Эмпирическое распределение разновидностей образования проводящих цепей в OCДCKC: nF = 4; nB = 2; nStrF = nStrB = 5; nStlbF = = nStlbB = 10; $IS_F = IS_B = [0, 30]$; iF = iB = 2; jF = 0; jB = 9; N = 500

Рисунок 19. Эмпирическое распределение переименованных точек встречи КА МООСКС_В № 1 ОСДСКС: nF = 4; nB = 2; nStrF = nStrB = 5; nStlbF = = nStlbB = 10; IS_F = IS_B = [0, 30]; iF = iB = 2; jF = 0; jB = 9; N = 500 3) параметров IS_F, IS_B, iF, iB, jF, находящихся в пределах, оговоренных выше.

Эмпирические распределения разновидностей образования проводящих цепей в ОСДСКС аппроксимируются равномерным законом распределения.

Во многих стандартных программных средствах, например STATISTIKA[6], для удобства работы с переменными, принимающими текстовые значения, реализован механизм, согласно которому каждому текстовому значению переменной ставится в соответствие число. Наличие такого механизма позволяет проводить любой статистический анализ над текстовыми переменными так, как если бы они принимали числовые значения. В данной работе две текстовые переменные - разновидность образования токопроводящей цепи в ОСДСКС и точка встречи КА МООСКС_F и МООСКС_В ОСДСКС. Область значений переменных - текстовые константы, которым поставлено в соответствии некоторые число. На рис. 17, 18 представлено одно и тот же эмпирическое распределение, но с различными масштабами (по оси абсцисс) текстовых констант. Таким образом, эмпирические распределения точек встречи КА, представленные на рис. 10-12, 14-15, 17-19, могут быть легко аппроксимированы известными подходящими теоретическими законами распределения.

Результаты статистического моделирования процесса функционирования однородной спонтанной двунаправленной стохастической коммутационной структуры полностью подтвердили правильность предложенной в работе идеи построения ОСДСКС.

4. Выводы

Впервые предложен и реализован в виде компьютерной модели принцип построения однородной спонтанной двунаправленной стохастической коммутационной структуры, решающей задачу спонтанного поиска проводящих цепей между активированными нейроавтоматными входами и выходами ОСДСКС.

 Современная технология позволяет физическую реализацию предложенной ОСДСКС.

Литература

- Филиппенко О. И., Филиппенко И. Г. Биологические, искусственные и нейроавтоматные сети. сравнительный анализ, Часть З. Искусственные нейроавтоматные сети // Восточно-Европейский журнал передовых технологий. – 2005. – № 4/2 (16). – С. 29–41.
- Розробка концепції побудови нейромережних та нейрокомп'ютерних технологій високопродуктивних оброблювачів інформації: Звіт про НДР (заключний) / Міністерство транспорту України. Харківська державна академія залізничного транспорту (ХарДАЗТ); № ДР 0100U00819; Інв. № 0704U003362. Харків, 2003. 201 с.
- Филиппенко О. И. Правонаправленные вероятностные коммутационные структуры // Восточно-Европейский журнал передовых технологий. – 2007. – № 5/2 (29). – С. 79–85.
- Филиппенко О. И. Синтез клеточного автомата однородной вероятностной коммутационной структуры // Восточно-Европейский журнал передовых технологий. – 2007. – 3/2 (27). – С. 29–41.
- Филиппенко О. И. Компьютерная модель и имитационное моделирование процесса образования случайных коммутационных цепей в однородной коммутационной структуре // Восточно-Европейский журнал передовых технологий. 2007. № 4/2 (28). С. 66–73.
- 6. Халафян А. А. Статистический анализ данных. 3-е изд. Учебник. М.: ООО «Бином-Пресс», 2007. 512 с.:ил.