ІНФОРМАЦІЙНО-КЕРУЮЧІ	CHCTEMBLIA	VANOTHERHICH	гранспорті

ТЕЗИ СТЕНДОВИХ ДОПОВІДЕЙ ТА ВИСТУПІВ УЧАСНИКІВ КОНФЕРЕНЦІЇ

HIGHLIGHTS OF REPORTS AND PRESENTATIONS OF PARTICIPANTS TO THE CONFERENCE

An analysis was conducted of the port-adjacent railway infrastructure used in international transportation. It was determined that ensuring the required quality of international transportation necessitates effective interaction between the railway and port logistics infrastructure.

When detailing the factors influencing the required capacity and efficiency of port railway stations, all factors were classified into three groups: structural, technological, and quantitative.

Among the key structural factors affecting the quality of international transportation services, special attention should be given to the number of tracks at stations, their effective length, and specialization.

The main technological factors to be considered in the interaction of logistics infrastructure include:

- types of train flows processed at the station,
- availability and ownership of shunting locomotives,
- the technology of servicing freight fronts at the station and port,
- the duration of technological operations at the station and port.

The main quantitative factors determining the level of international wagon flow servicing include:

- the number of freight points and freight fronts at the station and port,
- the number of consignments and wagons per consignment, taking into account existing unevenness,
 - the number of wagon fleet operators.

Studies of the interaction between port railway stations and logistics infrastructure in international transportation revealed significant imbalances in development. These imbalances are manifested in the excess of port transshipment capacity over the throughput and handling capacity of the adjacent railway infrastructure.

A target function of a model for the interaction of logistics infrastructure in international transportation has been developed. The criterion of optimality was defined as the total costs associated with the functioning of logistics infrastructure in international transportation. The model accounts for the expenses of port railway stations and ports in performing international freight transportation. Considering the nature of the target function and the constraints of the optimization task, the problem was reduced to one of dynamic programming.

The target function is additive, since the total costs of the port railway station and port infrastructure represent the sum of expenditures for individual elements of the logistics infrastructure.

Cost savings from improving the efficiency of logistics infrastructure interaction are achieved through the rational organization of wagon transfers to port freight fronts in international transportation.

УДК 621.391

ШТОМПЕЛЬ М.А., д.т.н., (УкрДУЗТ)

МОНІТОРИНГ МЕРЕЖ ТЕХНОЛОГІЧНОГО ЗВ'ЯЗКУ ЗАЛІЗНИЧНОГО ТРАНСПОРТУ

Постійний розвиток технологій електронних комунікацій та необхідність гарантування високої якості інформаційних та телекомунікаційних послуг у мережах технологічного зв'язку залізничного транспорту призводить до необхідності удосконалення методів та засобів моніторингу елементів мережевої інфраструктури. Проведений аналіз показав, що існуючі системи моніторингу в основному реалізуються програмним способом та передбачають різні варіанти збору даних з мережевого та кінцевого обладнання [1-3].

роботі представлено аналіз основних програмних засобів для моніторингу мережевої інфраструктури, визначено принципи їх технічної реалізації та процедури збору даних з урахуванням наявних особливостей мереж технологічного зв'язку залізничного транспорту. Запропоновано загальну архітектуру системи моніторингу та основні етапи налаштування для сегменту мережевої інфраструктури залізниці. Для підтвердження запропонованого підходу доцільності було моделювання спеціалізованому проведено y програмному середовищі та розроблено практичні рекомендації щодо впровадження системи моніторингу в умовах залізничного транспорту.

Список використаних джерел

- 1. Davis J. Modern system administration: managing reliable and sustainable systems. Sebastopol, CA: O'Reilly Media, 2022. 325 p.
- 2. Oswalt M., Adell C., Lowe S., Edelman J. Network programmability and automation: skills for the next-generation network engineer. Sebastopol, CA: O'Reilly Media, 2023. 825 p.
- 3. Заїка, В.Ф. Телекомунікаційні системи та мережі наступного покоління / В.Ф. Заїка, О.Г. Варфоломеєва, К.О. Домрачева, Г.О. Гринкевич. К., 2019. 315 с.