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Діагностика асинхронного двигуна з використанням зняття зубцевих 

характеристик та обробки даних з використанням штучного інтелекту 

Анотація. У статті розглядається інноваційний підхід до діагностики асинхронних двигунів, які є 
ключовими компонентами в промисловості та на залізничному транспорті, зокрема в системах автоматики 
та телекерування рухом поїздів. Запропонований метод базується на глибокому аналізі зубцевих гармонік у 
спектрі струму статора (Motor Current Signature Analysis, MCSA), що дозволяє проводити моніторинг стану 
двигуна в реальному часі без необхідності його зупинки. 

В роботі детально описано методологію, що починається зі збору даних струму статора за 
допомогою високочастотної дискретизації, продовжується виділенням та нормуванням зубцевих гармонік, 
частоти яких залежать від параметрів двигуна (кількості пазів статора та ротора, числа пар полюсів та 
частоти мережі). Особлива увага приділяється ідентифікації характерних частот, пов'язаних з різними 
видами несправностей, таких як ексцентриситет повітряного зазору (статичний та динамічний), а також 
пошкодження обмоток або механічні дефекти. 

Центральним елементом запропонованої системи є інтеграція штучного інтелекту, а саме 
багатошарової нейронної мережі прямого поширення (MLP), для автоматизованої обробки та класифікації 
отриманих спектральних даних. Вхідний шар мережі приймає вектор ознак, що включає нормовані амплітуди 
зубцевих та бічних гармонік. Для навчання мережі використовується метод зворотного поширення помилки з 
функцією втрат крос-ентропії та функцією активації ReLU у прихованих шарах, а вихідний шар використовує 
Softmax для класифікації чотирьох основних станів: нормальна робота, статичний ексцентриситет, 
динамічний ексцентриситет, та пошкодження обмоток. 

Наведені результати моделювання, проведені на асинхронному двигуні потужністю 5,5 кВт, 
підтверджують ефективність підходу. Експерименти включали симуляцію нормального стану, статичного 
та динамічного ексцентриситету, демонструючи значне зростання амплітуд характерних гармонік при 
наявності дефектів. Нейромережа, навчена на 1000 спектрах, досягла точності класифікації 94% на тестовій 
вибірці. 
Запропонований метод дозволяє не лише значно підвищити точність діагностики, але й забезпечити її 
оперативність, що є критично важливим для запобіжного обслуговування, зменшення експлуатаційних 
витрат та збільшення терміну служби обладнання в умовах безперервної роботи транспортних систем.  
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 Хоча метод чутливий до точного визначення 
параметрів двигуна та шумів, його подальший 
розвиток передбачає інтеграцію додаткових 
діагностичних ознак, таких як вібрація та 
температура, для подальшого підвищення надійності 
системи. 
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Вступ 
Асинхронні двигуни (АД) є 

фундаментальною складовою сучасної 
промисловості, а їхня роль на залізничному 
транспорті набуває особливого значення. Вони 
широко використовуються в різноманітних системах, 
включаючи приводи стрілочних переводів, 
вентиляцію тунелів, системи енергопостачання та 
допоміжні механізми рухомого складу. Зокрема, 
надійність роботи АД у приводах стрілочних 
переводів є критичною для забезпечення 
безперебійного та безпечного руху поїздів. 
Незважаючи на притаманну їм міцність та простоту 
конструкції, АД піддаються зношенню, зазнають 
механічних дефектів та можуть виходити з ладу 
внаслідок експлуатаційних впливів. Будь-яка 
несправність такого двигуна у системі керування 
стрілкою може призвести до затримок руху, 
порушення графіку перевезень та, найважливіше, до 
створення аварійних ситуацій, що безпосередньо 
загрожують безпеці пасажирів та вантажів. 

Традиційні методи діагностики, такі як 
візуальний огляд або вимірювання опору обмоток, 
часто є інвазивними та вимагають зупинки 
обладнання. У контексті залізничного транспорту, де 
безперервність руху є пріоритетом, планове 
виведення з експлуатації стрілочного переводу для 
діагностики є вкрай небажаним і призводить до 
суттєвих операційних втрат. Це створює нагальну 
потребу у розробці та впровадженні неінвазивних 
методів моніторингу, які дозволяють проводити 
діагностику стану АД у реальному часі, без 
переривання їхньої роботи. 

Аналіз зубцевих гармонік у спектрі струму 
статора (Motor Current Signature Analysis, MCSA) є 
одним з найбільш перспективних напрямків для 
вирішення цієї проблеми. Цей метод ґрунтується на 
принципі, що будь-які відхилення у фізичному стані 
двигуна – такі як ексцентриситет повітряного зазору, 
пошкодження обмоток або інші механічні 

несправності – викликають появу або зміну 
характерних гармонік у спектрі споживаного струму. 
Виявлення цих "сигнатур" на ранніх стадіях дозволяє 
своєчасно вжити запобіжних заходів, запобігаючи 
серйозним поломкам та їхнім негативним наслідкам. 

Сучасні досягнення у сфері штучного 
інтелекту (ШІ), зокрема розвиток нейронних мереж, 
відкривають нові можливості для автоматизації та 
значного підвищення точності аналізу діагностичних 
даних. Інтеграція алгоритмів машинного навчання 
дозволяє створити інтелектуальні системи, здатні 
самостійно розпізнавати складні патерни в 
спектральних даних, що робить процес діагностики 
більш об'єктивним та швидким. Застосування ШІ 
мінімізує вплив людського фактора та дозволяє 
оперативно виявляти несправності, що є ключовим 
для забезпечення високого рівня безпеки та 
ефективності перевізного процесу. 

Метою цієї роботи є розробка та 
обґрунтування методу діагностики асинхронних 
двигунів для залізничного транспорту, який базується 
на комплексному використанні аналізу зубцевих 
характеристик струму статора та нейромережевої 
обробки даних із застосуванням штучного інтелекту.  

Діагностика асинхронного двигуна з 
використанням зняття зубцевих характеристик та 
обробки даних нейромережею з використанням 
штучного інтелекту 

Аналіз сигнатури струму двигуна (MCSA) є 
потужною, неінвазивною технікою моніторингу 
стану, яка аналізує спектр струму статора для 
ідентифікації специфічних гармонічних компонентів, 
пов'язаних з несправностями. Цей підхід дозволяє 
проводити діагностику в реальному часі без 
переривання роботи двигуна. MCSA є особливо 
ефективним для діагностики несправностей, що 
викликають коливання крутного моменту або 
швидкості, що робить його ідеальним для аналізу 
різноманітних несправностей двигунів. [1] 

Сучасні досягнення в галузі штучного 
інтелекту, зокрема в нейронних мережах, відкривають 
нові можливості для автоматизації та значного 
підвищення точності діагностичних процесів на 
основі MCSA. Глибокі моделі навчання, такі як 
багатошаровий перцептрон (MLP), використаний у 
цій методології, можуть ефективно класифікувати 
складні стани двигуна, мінімізуючи втручання 
людини та підвищуючи точність діагностики. [2] 

Поєднання MCSA та ШІ створює потужний 
синергетичний ефект для прогностичного 
обслуговування. MCSA надає багаті, але часто 
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складні та тонкі дані про сигнатури несправностей. 
ШІ, особливо глибоке навчання, чудово розпізнає 
закономірності у багатовимірних, зашумлених даних. 
Таким чином, ця комбінація виходить за рамки 
традиційної інтерпретації MCSA людськими 
експертами, дозволяючи створити більш надійну, 
автономну та потенційно більш чутливу систему 
виявлення несправностей. Це означає перехід від 
реактивного або планового обслуговування до 
справжнього прогностичного обслуговування, де 
тонкі зміни можуть бути виявлені на ранніх стадіях, 
запобігаючи катастрофічним збоям та оптимізуючи 
графіки технічного обслуговування. [3] 

Зубцеві гармоніки виникають унаслідок 
природної взаємодії магнітних полів статора і ротора, 
які залежать від геометричних особливостей двигуна. 
Характеристики залежать від кількості пазів статора 
(Ns) та ротора (Nr). Частоти цих гармонік (fzh) можуть 
бути розраховані за формулою 

 

  

      (1) 
 

де f1 – частота живильної мережі; 
    k – порядковий номер гармоніки (k=0,1,2,…); 
    p – число пар полюсів; 
    Nr – число пазів ротора. 

При ексцентриситеті повітряного зазору 
(статичному або динамічному) амплітуда гармонік 
зростає. Для динамічного ексцентриситету 
з'являються додаткові бічні частоти (fde), які 
розраховуються як  

 
fde=f1±m×fr    

      (2) 
 

де fr=n/60 – частота обертання ротора (в Гц);  
    n – швидкість обертання (об/хв); 
    m – ціле число. 

Загальний сигнал струму статора I(t) може 
бути представлений як сума його гармонійних 
складових 

 
, 

 
де I1 – амплітуда основної гармоніки; 
    Izh,k – амплітуда зубцевої гармоніки порядку k; 
    ϕk – фазовий зсув. 

Умови несправності, такі як статичний або 
динамічний ексцентриситет повітряного зазору, 

ідентифікуються за помітним зростанням амплітуди 
специфічних гармонік у спектрі струму статора. 
Наприклад, в експериментальному дослідженні 
ексцентриситет призвів до збільшення амплітуд 
гармонік на частотах fzh=350 Гц та fzh=650 Гц. 
Експериментальна установка включає асинхронний 
двигун потужністю 5,5 кВт з p=2 парами полюсів, 
Nr=28 пазами ротора та частотою живильної мережі 
f1=50 Гц. 

Цей підхід підкреслює важливість простору 
ознак, заснованого на фізичних принципах. Вирази (1) 
та (2) не є довільними частотами, а безпосередньо 
виводяться з фізичних параметрів двигуна. Це 
означає, що процес вилучення ознак полягає не 
просто у застосуванні загального швидкого 
перетворення Фур'є (FFT), а у виявленні специфічних, 
фізично значущих частот. Такий підхід до інженерії 
ознак, заснований на фізиці, є вирішальним. Він 
зменшує розмірність задачі, робить ознаки більш 
інтерпретованими та, ймовірно, покращує здатність 
нейронної мережі до узагальнення, оскільки вона 
навчається на сигналах, безпопосередньо пов'язаних з 
основними механізмами несправностей, а не на 
довільних спектральних компонентах. Це ключова 
відмінність від чисто керованих даними моделей 
"чорної скриньки". 

Також важливо враховувати чутливість 
MCSA до параметрів двигуна та умов експлуатації. 
Точність діагностичної системи сильно залежить від 
точного знання конструктивних параметрів двигуна 
та його робочої швидкості. Якщо ці параметри 
невідомі або значно змінюються під час роботи 
(наприклад, для двигунів зі змінною швидкістю), 
фіксовані частотні діапазони для виявлення 
несправностей будуть неточними. Це вказує на 
необхідність або надійного модуля оцінки параметрів, 
або адаптивного відстеження частотних діапазонів 
для реального розгортання, що є значним викликом, 
який виходить за рамки цієї конкретної роботи, але є 
вирішальним для практичного застосування. [4] 

Початковий крок у діагностичній методології 
передбачає вимірювання сигналу струму статора за 
допомогою відповідних датчиків струму. Важливо, 
що частота дискретизації (fs) системи збору даних 
повинна відповідати критерію Найквіста, тобто бути 
щонайменше вдвічі більшою за максимальну 
очікувану частоту зубцевих гармонік (fs>2fzh,max). 
Якщо найвища очікувана частота несправності не 
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буде адекватно захоплена, виникне аліасинг, що 
призведе до неправильної діагностики. Це означає, що 
проектування системи збору даних (вибір датчиків, 
АЦП та частоти дискретизації) має бути ретельно 
узгоджене з теоретичними частотами несправностей. 
Глибший наслідок полягає в тому, що для двигунів з 
більшою кількістю полюсів або вищими швидкостями 
fzh,max буде вищою, що вимагає вищих частот 
дискретизації, що, своєю чергою, впливає на вимоги 
до зберігання та обробки даних. Це створює 
практичне обмеження на проектування системи. 

Основні етапи діагностування. 
Етап виділення зубцевих характеристик 

діагностичної моделі зосереджений на перетворенні 
"сирого" сигналу струму статора в набір кількісних 
ознак, які є чутливими до певних несправностей 
асинхронного двигуна. Суть процесу полягає у 
виявленні та кількісній оцінці специфічних частотних 
складових, які виникають у струмі двигуна при 
наявності дефектів. 

Перетворення сигналу в частотну область 
полягає у використанні спектрального аналізу. Сигнал 
струму статора, який є часовою функцією I(t), 
перетворюється з часової області в частотну. Це 
дозволяє розкласти складний сигнал на його складові 
гармоніки, виявивши основні та додаткові частоти, а 
також їхні амплітуди. Для цього застосовується 
швидке перетворення Фур'є (FFT). Результатом є 
спектр, який відображає амплітуду кожної частотної 
складової. [10] 

Перед виконанням спектрального аналізу до 
сигналу застосовується віконна функція (наприклад, 
вікно Хеммінга). Це робиться для покращення 
"роздільної здатності" отриманого спектра та 
зменшення ефекту "витоку спектра" (spectral leakage). 
Витік спектра може призвести до розмиття піків та 
утруднення точного визначення амплітуд гармонік, 
особливо тих, що мають низьку амплітуду або 
знаходяться близько до інших, сильніших складових. 
Віконна функція "згладжує" краї тимчасового 
сегменту, який аналізується, зменшуючи штучні 
артефакти в спектрі. [11] 

Ідентифікація та кількісна оцінка гармонік 
несправностей. При наявності дефектів, таких як 
ексцентриситет повітряного зазору, амплітуди цих 
гармонік зростають. Їхні частоти можна розрахувати 
за (1). 

Окрім зубцевих гармонік, при деяких типах 
несправностей, зокрема при динамічному 
ексцентриситеті повітряного зазору, у спектрі струму 
з'являються додаткові бокові частоти (fde). Ці частоти 

пов'язані з частотою обертання ротора (fr). Зростання 
амплітуд цих складових є прямим індикатором 
динамічного ексцентриситету. 

Для отримання уніфікованих ознак, які менш 
чутливі до змін навантаження або напруги живлення, 
амплітуди виявлених зубцевих та бічних гармонік 
нормуються. Це зазвичай виконується шляхом 
ділення амплітуди гармоніки несправності на 
амплітуду основної гармоніки струму (I1) 

 

 
 

де  — амплітуда зубцевої гармоніки 
порядку k. 

На завершення етапу формування вектора 
ознак всі виділені та нормовані амплітуди 
характерних гармонік, а також відповідні частоти 
бокових складових, об'єднуються в єдиний вектор 
ознак. Цей вектор є кількісним представленням стану 
двигуна і служить вхідними даними для наступного 
етапу – нейромережевої обробки. Таким чином, 
складний часовий сигнал трансформується в 
компактний числовий формат, який може бути 
ефективно оброблений алгоритмами штучного 
інтелекту. 

Етап нейромережевої обробки є 
інтелектуальним ядром розробленої діагностичної 
моделі, що забезпечує автоматичну класифікацію 
стану асинхронних двигунів на основі виділених 
спектральних ознак. Він ґрунтується на принципах 
штучного інтелекту, зокрема на використанні 
нейронних мереж. 

Для реалізації класифікації несправностей 
використовується багатошарова нейронна мережа 
прямого поширення (MLP). Цей тип мереж 
складається з послідовно розташованих шарів 
нейронів, де інформація рухається лише в одному 
напрямку – від вхідного шару до вихідного. [12] 

На вхідний шар мережі подається вектор ознак 
(F). Цей вектор містить кількісні дані, отримані на 
попередньому етапі виділення зубцевих 
характеристик: нормовані амплітуди зубцевих 
гармонік (Azh,k) та частоти додаткових бічних гармонік 
(fde). Кількість елементів у цьому векторі відповідає 
кількості проаналізованих гармонік та бічних частот. 

Між вхідним та вихідним шарами розташовані 
приховані шари.  

Вихідний шар мережі призначений для 
класифікації стану двигуна.  
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Навчання мережі є ключовим етапом, під час 
якого вона вчиться розпізнавати патерни, що 
відповідають різним несправностям.  

Розроблення моделі та дослідження 
результатів з використанням MATLAB 

Запропонована нейронна мережа є 
програмною моделлю, реалізованою в середовищі 
MATLAB за допомогою функцій Deep Learning 
Toolbox. Вона складається з послідовності шарів, 
кожен з яких виконує певні математичні операції над 
вхідними даними, щоб навчитися розпізнавати 
патерни, пов'язані з різними станами двигуна. [13] 
Вибір архітектури MLP та функцій активації 
відображає баланс між простотою та складністю 
задачі. Ця архітектура, хоча і ефективна, свідчить про 
те, що вилучені ознаки (вектор F) є достатньо 
дискримінаційними, і складна архітектура глибокого 
навчання (як-от CNN або LSTM, згадані в [13] для 
інших застосувань) не є абсолютно необхідною. Це 
означає, що етапи MCSA та інженерії ознак 
виконують значну частину "важкої роботи" з 
перетворення сирих сигналів у лінійно розділюваний 
простір ознак. Якби ознаки були складнішими або 
мали притаманні просторові/часові залежності, 
знадобилася б інша, більш спеціалізована архітектура 
мережі. Це підкреслює, що "модель" – це не лише 
нейронна мережа, а весь конвеєр, де інженерія ознак 
відіграє вирішальну роль у спрощенні завдання 
класифікації для MLP. 

У розробленій моделі використовується три 
прихованих шари, кожен з яких містить 64 нейрони. 
Нейрони в цих шарах застосовують функцію активації 
ReLU (f(x)=max(0, x)). ReLU обрано за його 
обчислювальну ефективність та здатність зменшувати 
проблему зникаючих градієнтів. Ця функція 
допомагає мережі вивчати складні нелінійні 
залежності у вхідних даних, що є критично важливим 
для точного розпізнавання різноманітних станів 
двигуна. 

Вихідний шар використовує функцію 
активації Softmax, яка є стандартною для задач 
багатокласової класифікації, перетворюючи сирі 
вихідні дані в ймовірності для кожного класу. Мережа 
класифікує стани двигуна на: нормальну роботу, 
статичний ексцентриситет, динамічний 
ексцентриситет та пошкодження обмоток. 

Deep Learning Toolbox MATLAB надає 
комплексне середовище для проектування, 
впровадження та симуляції глибоких нейронних 
мереж. Він пропонує різні функції та інструменти для 
визначення шарів мережі, включаючи інтерактивне 
проектування за допомогою програми Deep Network 
Designer. Інструментарій також сприяє взаємодії, 
дозволяючи імпорт/експорт моделей з/до інших 
фреймворків, таких як PyTorch, TensorFlow та ONNX. 
[13] 

Нейронна мережа навчається за допомогою 
алгоритму зворотного поширення помилки 
(backpropagation), стандартного методу оновлення ваг 
мережі для мінімізації помилок прогнозування. 
Метою навчання є мінімізація функції втрат крос-
ентропії, яка зазвичай використовується для завдань 
класифікації 

 

 
 

де yi — справжня мітка класу;  
    ŷі — передбачена ймовірність.  

У проведеному дослідженні нейромережа 
навчалася на 1000 спектрах струму, що охоплювали 
різні стани двигуна. Кожен приклад у навчальній 
вибірці складається з вектора ознак (вхід) та 
відповідної "правильної" мітки класу (бажаний вихід). 
Параметри нейромережі зведені до таблиці 1. 

 

Таблиця 1. Архітектура багатошарового перцептрона та параметри навчання 

Параметр / 
Компонент 

Опис Значення / Конфігурація Функція / 
Інструментарій 

MATLAB 

Тип мережі Багатошаровий 
перцептрон  

- Deep Learning 
Toolbox  

Вхідний шар Приймає вектор ознак F F=[Azh,1,…,Azh,m,fde,1,…] -  
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Приховані шари Кількість та нейрони на 
шар 

3 шари, по 64 нейрони кожен -  

Функція активації 
прихованих шарів 

Нелінійна функція ReLU (f(x)=max(0, x)) -  

Вихідний шар Функція активації для 
класифікації 

Softmax -  

Класи вихідних 
даних 

Класифікація станів 
двигуна 

Нормальна робота, статичний 
ексцентриситет, динамічний 

ексцентриситет, пошкодження обмоток 

- 

Метод навчання Алгоритм оптимізації ваг Зворотне поширення помилки 
(Backpropagation) 

Trainnet [14] 

Функція втрат Метрика для мінімізації 
помилок 

Крос-ентропія trainnet, 
trainingOptions [14] 

Оптимізатор Алгоритм оновлення ваг Наприклад, Adam (типово в 
trainingOptions) 

trainingOptions  [14] 

Розмір навчального 
набору даних 

Кількість спектрів для 
навчання 

1000 спектрів - 

 
Дослідження проводилося на асинхронному 

двигуні з параметрами: потужність 5,5 кВт, число пар 
полюсів p=2, число пазів ротора Nr=28, а частота 
живильної мережі f1=50 Гц. Були змодельовані три 
основні стани:  

- нормальна робота – еталонний стан без 
дефектів. 

- статичний ексцентриситет імітувався 
зміщенням 0,3 мм. 

- динамічний ексцентриситет імітувався 
вигином вала на 0,2 мм. 
Збір даних струму статора виконувався з 

частотою дискретизації fs=10 кГц, а тривалість запису 
становила 10 секунд для кожного стану.  

Проведена MATLAB-симуляція генерує два 
основні типи візуалізацій: графіки струму статора в 
часовій області та його спектри в частотній області. 
Ці візуалізації дозволяють покроково аналізувати 

діагностичний процес, від сирого сигналу до 
виявлення прихованих несправностей. 

Графіки струму статора (рисунок 1) в часовій 
області (Current Waveforms in Time Domain) 
відображають миттєве значення струму статора у 
функції часу для кожного змодельованого стану 
асинхронного двигуна.  

Візуально оцінити наявність та тип 
несправності дуже складно. Це зумовлено тим, що 
основна гармоніка струму, що відповідає частоті 
живильної мережі (50 Гц ), має значно більшу 
амплітуду порівняно з гармоніками, що виникають 
через несправності. Зубцеві гармоніки та бічні смуги, 
які є індикаторами дефектів, зазвичай мають 
амплітуди, що становлять лише невеликий відсоток 
(зазвичай менше 1%) від амплітуди основної 
гармоніки. Ці малі спотворення майже непомітні на 
загальному синусоїдальному сигналі. Крім того, 
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людське око не здатне розрізняти такі незначні зміни 
форми сигналу, особливо у присутності незначних 
шумів або операційних флуктуацій.  

Графік нормальної роботи показує практично 
ідеальний, чистий синусоїдальний сигнал, що 
відповідає стабільній та бездефектній роботі двигуна. 

При статичному ексцентриситеті сигнал 
залишатиметься переважно синусоїдальним. Можуть 
бути присутні дуже легкі та ледь помітні модуляції 
амплітуди, які викликані нерівномірністю повітряного 
зазору, але вони зазвичай не помітні без ретельного 
аналізу. 

Динамічний ексцентриситет може з'явитися 
дуже тонка амплітудна модуляція основного сигналу, 
що повторюється з частотою обертання ротора. Ця 
модуляція, хоч і існує, але, як правило, настільки 
мала, що її візуальна ідентифікація в часовій області є 
ненадійною. 

Залежно від ступеня та типу пошкодження, 
можуть спостерігатися незначні спотворення 
синусоїдальної форми, такі як легка асиметрія або 
поява "шуму" на вершинах/западинах. Однак, знову ж 
таки, для більшості реальних випадків ці спотворення 
є візуально незначними. 

 

 
Рисунок 1. Графіки струму статора 

Таким чином графіки в часовій області 
наочно демонструють ключову причину застосування 
спектрального аналізу – неможливість точної та 
надійної діагностики несправностей асинхронних 
двигунів лише на основі візуального спостереження 
за формою струму. 

Спектри струму статора (Current Spectra in 
Frequency Domain) є результатом швидкого 
перетворення Фур'є сигналу струму статора і 
відображає амплітуди різних частотних складових. 
Вісь X представляє частоту (в Герцах), а вісь Y – 
амплітуду (в Амперах), часто в логарифмічному 
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масштабі (semilogy) для кращого виділення 
низькоамплітудних гармонік. 

 

 
Рисунок 2. Спектри струму статора 

 
Спектральний аналіз є фундаментальним для 

виявлення прихованих несправностей, оскільки він 
дозволяє виділити характерні частоти. Несправності 
генерують специфічні частотні складові (гармоніки), 
які розраховуються на основі параметрів двигуна, 
зростання амплітуд цих характерних гармонік є 
прямим індикатором розвитку дефекту. 

На спектрі при  нормальній роботі буде 
домінувати один яскраво виражений пік на частоті 
живильної мережі (f1 = 50 Гц ). Амплітуди зубцевих 
гармонік (fzh) будуть присутні, але на мінімальному, 
"фоновому" рівні, відображаючи нормальну 
електромагнітну взаємодію ротора і статора. Бічні 
частоти (fde) будуть відсутні або матимуть вкрай 
низькі амплітуди. 

Ключовою ознакою статичного 
ексцентриситета буде значне зростання амплітуд 
певних зубцевих гармонік. У результатах 
моделювання це проявляється зростанням амплітуд 
гармонік на частотах, наприклад, 350 Гц та 650 Гц. Ці 
збільшення амплітуд свідчать про нерівномірність 
повітряного зазору, спричинену статичним зміщенням 
ротора. 

Динамічний ексцентриситет на додаток до 
зростання амплітуд зубцевих гармонік, найбільш 
характерною ознакою є поява або значне збільшення 
амплітуд додаткових бокових частот. Ці бічні смуги 

розташовуються навколо основної гармоніки та/або 
зубцевих гармонік і є прямим індикатором 
динамічних дефектів ротора, таких як вигин вала або 
його дисбаланс. 

Спектр при пошкодженні обмоток може 
показати зростання амплітуд на інших характерних 
частотах, які не завжди є зубцевими гармоніками, але 
пов'язані з асиметрією обмоток або іншими 
електричними дефектами. Наприклад, можуть 
з'явитися або значно збільшитися амплітуди гармонік, 
кратних основній частоті (2f1, 3f1, тощо), або інших 
характерних частот, що виникають при міжвиткових 
замиканнях або обривах фаз. 

Дані, отримані на етапі нейромережевої 
обробки, відображають ефективність та точність 
навченої моделі ШІ. Ці дані критично важливі для 
оцінки надійності та придатності моделі для 
використання в реальних системах автоматики. Для 
візуалізації процесу навчання та результатів 
використано графічний інструмент nntraintool 
MATLAB.  

Ефективність розробленої діагностичної 
моделі була підтверджена шляхом її тестування на 
даних, отриманих у процесі симуляції. Основною 
метою було переконатися, що нейронна мережа 
здатна коректно класифікувати стани асинхронного 
двигуна, використовуючи лише спектральні ознаки, 
виділені зі струму статора. Для навчання нейронної 
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мережі було сформовано навчальний набір, що 
включав 1000 спектрів, згенерованих для різних 
станів. Кожен спектр був перетворений у вектор 
ознак, що містив нормовані амплітуди діагностичних 
гармонік, які подавалися на вхід нейромережі. 

Ключовим результатом є оцінка ефективності 
навченої мережі на тестовій вибірці, яка складалася з 
даних, що не використовувалися під час навчання. 
Точність класифікації, досягнута моделлю, склала 
94%. Цей показник свідчить про високу здатність 
нейронної мережі до узагальнення та правильного 
розпізнавання несправностей на основі аналізу 
спектральних ознак. 

 
Висновок 
 
Запропонований у роботі метод діагностики 

асинхронних двигунів, що базується на комплексному 
аналізі спектральних характеристик струму статора та 
застосуванні нейромереж, демонструє високу 
ефективність і є перспективним для впровадження у 
критично важливих системах, зокрема на 
залізничному транспорті. 

Аналіз сигнатури струму двигуна є потужною 
неінвазивною технікою, яка дозволяє виявляти 
несправності АД на ранніх стадіях без зупинки 
обладнання. Він ґрунтується на фізичних принципах, 
що пов'язують геометричні та електричні параметри 
двигуна з характерними гармоніками у спектрі 
струму, такими як зубцеві гармоніки та бічні частоти. 
Інтеграція багатошарової нейронної мережі для 
класифікації станів двигуна дозволила досягти 
високої точності. В ході симуляцій, нейромережа, 
навчена на 1000 спектрах, показала точність 
класифікації 94% на тестовій вибірці. Це підтверджує, 
що модель здатна ефективно розпізнавати складні 
патерни несправностей на основі векторів ознак, 
сформованих з спектральних даних. 

Розроблений метод дозволяє перейти від 
планового чи реактивного обслуговування до 
справжнього прогностичного обслуговування. 
Оперативне та точне виявлення дефектів, таких як 
ексцентриситет повітряного зазору чи пошкодження 
обмоток, є критично важливим для мінімізації ризиків 
аварій, скорочення часу простоїв стрілочних 
переводів, зменшення експлуатаційних витрат та 
підвищення загального рівня безпеки руху. 

Визначено, що точність діагностики залежить 
від точного знання конструктивних параметрів 
двигуна. У подальшому розвитку моделі планується 
інтеграція додаткових діагностичних ознак, таких як 

дані вібрації та температури, що дозволить підвищити 
надійність системи та зробити її більш стійкою до 
змін умов експлуатації та шумів. 

Розроблений метод є подальшим розвитком 
існуючих діагностичних підходів [15, 16]. 
Запропонований підхід є значним кроком у напрямку 
створення автономних та інтелектуальних систем 
моніторингу, які є запорукою ефективного та 
безпечного функціонування залізничного транспорту. 
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  artificial intelligence   
 Abstract. This article presents an innovative 
approach to the diagnostics of asynchronous motors 
(AMs), which are pivotal components in industrial 
applications and railway transport systems, particularly 
in automation and train remote control systems. The 
proposed method is grounded in a comprehensive 
analysis of tooth ripple harmonics within the stator 
current spectrum, utilizing Motor Current Signature 
Analysis (MCSA). This technique facilitates real-time 
condition monitoring of the motor without requiring its 
operational shutdown, thereby ensuring continuous 
system functionality. 

The paper meticulously details the methodology, 
commencing with the acquisition of stator current signals 
at a high sampling frequency, which must exceed twice 
the maximum tooth ripple harmonic frequency. This is 
followed by the extraction and normalization of tooth 
ripple harmonics, whose frequencies are inherently 
dependent on specific motor parameters, including the 
number of stator and rotor slots, the number of pole pairs, 
and the supply frequency. A significant emphasis is 
placed on the precise identification of characteristic 
frequencies associated with various fault types, such as 
static and dynamic air-gap eccentricity, winding faults, 
and general mechanical defects. 

A central tenet of the proposed diagnostic system 
is the integration of Artificial Intelligence (AI), 
specifically a multi-layer perceptron (MLP) feedforward 
neural network, for the automated processing and 
classification of the derived spectral data. The input layer 
of this neural network is designed to receive a 
comprehensive feature vector, comprising the normalized 
amplitudes of relevant tooth ripple harmonics and 
sideband frequencies. The network undergoes training 
using the backpropagation algorithm, coupled with a 
cross-entropy loss function to optimize its performance. 
Hidden layers employ the ReLU activation function, 
ensuring efficient learning and non-linearity, while the 

output layer utilizes a Softmax function to classify the 
motor's operational state into four primary categories: 
normal operation, static eccentricity, dynamic 
eccentricity, and winding faults. 

The presented simulation results, conducted on a 
5,5 kW asynchronous motor with specific parameters 
(p=2, Nr=28, f1=50 Hz), decisively corroborate the 
efficacy of the proposed methodology. Experiments 
encompassed the simulation of normal operating 
conditions, static eccentricity (simulated as a 0.3 mm 
displacement), and dynamic eccentricity (simulated as a 
0.2 mm shaft bend). These simulations robustly 
demonstrated a significant increase in the amplitudes of 
characteristic harmonics at specific frequencies (e.g., 350 
Hz and 650 Hz) when faults were introduced, thereby 
providing clear diagnostic indicators. The neural 
network, rigorously trained on a dataset of 1000 spectral 
samples, achieved a commendable classification accuracy 
of 94% on the unseen test set, validating its robust 
diagnostic capabilities. 

The advocated diagnostic method not only 
substantially enhances diagnostic precision but also 
ensures operational efficiency, which is paramount for 
predictive maintenance, reducing operational costs, and 
extending the service life of critical equipment within the 
demanding environment of continuous railway transport 
system operations. While acknowledging the method's 
sensitivity to precise motor parameter definition and 
signal noise, future work is planned to integrate 
additional diagnostic features, such as vibration and 
temperature data, to further augment the system's 
accuracy and reliability, ensuring a more comprehensive 
diagnostic solution. 

Keywords: Asynchronous motor, diagnostics, 
tooth ripple harmonics, spectral analysis, Motor Current 
Signature Analysis (MCSA), artificial intelligence, neural 
network, air-gap eccentricity, winding faults, predictive 
maintenance. 

 
 


