

УКРАИНСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

Э.Д. ЧИХЛАДЗЕ

СТРОИТЕЛЬНАЯ МЕХАНИКА

Учебник

Харьков 2011

Рецензенты:

профессор А.Ф. Яременко (Одесская государственная академия строительства и архитектуры), профессор В.А. Гришин (Одесский национальный морской университет)

Издание второе, переработанное и дополненное

Чихладзе Э.Д.

Ч 713 Строительная механика: Учебник. – Харьков: УкрГАЖТ, 2011. – 320 с., рис. 234, табл. 14. ISBN 978-966-2033-48-9

Данная книга, написанная в соответствии с программой курсов для транспортных вузов, отличается более углубленным рассмотрением методов расчета стержневых систем и распространением этих методов на системы нестержневые (континуальные). Учебник содержит большое число подробных примеров расчета, способствующих лучшему усвоению учебного материала и применению в практической деятельности.

При подготовке второго издания в текст внесены дополнения: метод перемещений в матричной форме и метод конечных элементов на его основе, а также устранены недочеты, замеченные в предыдущем издании.

Предназначен для студентов высших учебных заведений, которые обучаются по направлению подготовки «Строительство».

УДК 624.04 ББК 38.112

ISBN 978-966-2033-48-9

©Украинская государственная академия железнодорожного транспорта, 2011

Учебник

Чихладзе Элгуджа Давидович

СТРОИТЕЛЬНАЯ МЕХАНИКА

Ответственный за выпуск Веревичева М.А.

Редактор Ибрагимова Н.В.

Підписано до друку 14.10.10 р. Формат паперу 60х84 1/8. Папір писальний. Умовн.-друк.арк. 8,75. Тираж 100. Замовлення № Видавець та виготовлювач Українська державна академія залізничного транспорту 61050, Харків - 50, майдан Фейсрбаха, 7 Свідоцтво суб'єкта видавничої справи ДК № 2874 від 12.06.2007 р.

СОДЕРЖАНИЕ

предис	слов	ИЕ 8								
Раздел 1	l.	Общие положения 10								
1	.1.	Предмет и задачи строительной механики 10								
1	.2.	Виды сооружений и их особенности 11								
1	.3.	Нагрузки и воздействия 13								
1	.4.	Реальное сооружение и его расчетная схема								
1	.5.	Кинематический анализ сооружений 18								
	1.5	.1. Определение числа степеней свободы сооружений,								
		составленных из дисков, соединенных между собой								
		шарнирами 18								
	1.5	.2. Определение числа степеней свободы шарнирно-								
		стержневой системы (фермы) 21								
	1.5	.3. Мгновенно изменяемые системы. 22								
	1.5	.4. Примеры кинематического анализа сооружений 24								
Раздел 2	2.	Многопролетные статически определимые балки 26								
2	.1.	Расчет многопролетных статически определимых балок								
		на неподвижную нагрузку 27								
	2.1	.1. Матричная форма расчета 28								
2	.2.	Расчет многопролетных статически определимых балок								
		на подвижную нагрузку 33								
	2.2	.1. Линии влияния опорных реакций в простых балках 34								
	2.2	.2. Линии влияния изгибающих моментов в сечениях								
		простых балок 36								
	2.2	.3. Линии влияния поперечных сил в сечениях простых								
		балок								
	2.2	.4. Связь матрицы влияния и линии влияния 40								
	2.2	.5. Линии влияния при узловой передаче нагрузки 41								
	2.2	.6. Кинематический метод построения линий влияния 43								
	2.2	.7. Линии влияния для многопролетных статически								
		определимых балок 46								
	2.2	.8. Загружение линий влияния неподвижной нагрузкой 48								
	2.2	.9. Загружение линий влияния подвижной нагрузкой 53								
Раздел З	3.	Статически определимые плоские фермы 56								
3	.1.	Классификация ферм 56								
3	.2.	Определение усилий в стержнях ферм 59								
	3.2	.1. Способ вырезания узлов								
	3.2	.2. Способ сечений (способ моментной точки) 61								
-	3.2	.3. Способ замены связей 63								
3	.3.	<i>Линии влияния усилий в фермах</i> 64								
	3.3	.1. Линии влияния усилий в балочных фермах 65								

3.3	3.2. Линии влияния в стержнях консольных ферм	68
3.3	3.3. Линии влияния в стержнях консольно-балочных	
	ферм	70
3.3	3.4. Линии влияния в стержнях шпренгельных ферм	72
3.3	5.5. Пример расчета фермы на неподвижную нагрузку	
	аналитически и по линиям влияния	76
Раздел 4.	Распорные системы	83
4.1.	Расчет трехшарнирной арки на неподвижную нагрузку	83
4.2.	Особенности расчета трехшарнирной арки с затяжкой	85
4.3.	Расчет систем, включающих трехшарнирную арку	87
4.4.	Расчет трехшарнирных рам на неподвижную нагрузку	89
4.5.	Расчет трехшарнирной арки на подвижную нагрузку	94
4.6.	Расчет трехшарнирных рам на подвижную нагрузку	97
4.7.	Расчет арочных ферм	101
4.7	7.1. Расчет арочных ферм на неподвижную нагрузку	101
4.7	2. Расчет арочных ферм на подвижную нагрузку	103
4.8.	Расчет комбинированных систем	104
4.8	8.1. Расчет комбинированных систем на неподвижную	
	нагрузку	106
4.8	В.2. Расчет комбинированных систем на подвижную	
		100
	нагрузку	100
Раздел 5.	Теория перемещений	108
Раздел 5. 5.1.	Нагрузку Теория перемещений Теория перемещений	108 109 109
Раздел 5. 5.1. 5.2.	Нагрузку Теория перемещений Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил	108 109 109 111
Раздел 5. 5.1. 5.2. 5.2	Нагрузку Пепрузку Теория перемещений Пействительная работа внешних сил Действительная работа внутренних сил	108 109 109 111 111
Раздел 5. 5.1. 5.2. 5.2 5.2	Нагрузку Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов	108 109 109 111 111 112
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2	Нагрузку Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил	109 109 111 111 112 113
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2	Нагрузку Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил Действительная работа внутренных сил 2.2. Работа внутренних изгибающих моментов Действительных сил 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних	109 109 111 111 112 113
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2	Нагрузку Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил	108 109 111 111 112 113 116
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2 5.3. 5.4.	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений	108 109 111 111 112 113 116 118
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений Определение перемещений от заданной внешней	108 109 111 111 112 113 116 118
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2 5.3. 5.4. 5.5.	Нагрузку Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил	108 109 111 111 112 113 116 118 121
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.3. 5.4. 5.5. 5.5	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений Определение перемещений от заданной внешней нагрузки 5.1. Пример определения перемещений от заданной	108 109 111 111 112 113 116 118 121
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.3. 5.4. 5.5. 5.5	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений Определение перемещений от заданной внешней нагрузки 5.1. Пример определения перемещений от заданной внешней нагрузки	108 109 109 111 111 112 113 116 118 121 126
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.3. 5.4. 5.5. 5.5 5.6.	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений Определение перемещений от заданной внешней нагрузки 5.1. Пример определения перемещений от заданной внешней нагрузки Определение перемещений от температурных	108 109 111 111 112 113 116 118 121 126
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений Определение перемещений от заданной внешней нагрузки 5.1. Пример определения перемещений от заданной внешней нагрузки Определение перемещений от температурных воздействий	108 109 109 111 111 112 113 116 118 121 126 127
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений Определение перемещений от заданной внешней нагрузки 5.1. Пример определения перемещений от заданной внешней нагрузки Определение перемещений от температурных воздействий 6.1. Пример определения перемещений от	108 109 111 111 112 113 116 118 121 126 127
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений Определение перемещений от заданной внешней нагрузки 5.1. Пример определения перемещений от заданной внешней нагрузки Определение перемещений от температурных воздействий 6.1. Пример определения перемещений от температурных воздействий	108 109 111 111 112 113 116 118 121 126 127 129
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений Определение перемещений от заданной внешней нагрузки 5.1. Пример определения перемещений от заданной внешней нагрузки Определение перемещений от температурных воздействий 6.1. Пример определения перемещений от температурных воздействий 6.1. Пример определения перемещений от температурных воздействий	108 109 111 111 112 113 116 118 121 126 127 129
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	Напрузку Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил 2.1 Работа внутренних продольных сил 2.2 Работа внутренних изгибающих моментов 2.3 Работа внутренних тангенциальных сил 2.3 Работа внутренних тангенциальных сил 2.3 Работа внутренних тангенциальных сил 3.3 Работа внутренних тангенциальных сил 3.4 Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений	108 109 109 111 111 112 113 116 118 121 126 127 129 131
Раздел 5. 5.1. 5.2. 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	Теория перемещений Действительная работа внешних сил Действительная работа внутренних сил Действительная работа внутренних сил 2.1. Работа внутренних продольных сил 2.2. Работа внутренних изгибающих моментов 2.3. Работа внутренних тангенциальных сил Возможные перемещения и возможная работа внешних и внутренних сил Общая формула для определения перемещений Определение перемещений от заданной внешней нагрузки 5.1. Пример определения перемещений от заданной внешней нагрузки 5.1. Пример определения перемещений от температурных воздействий 5.1. Пример определения перемещений от температурных болдействий 5.1. Пример определения перемещений от температурных болдействий 5.1. Пример определения перемещений от температурных болдействий 5.1. Пример определения перемещений от заданного смещения связей	108 109 109 111 111 112 113 116 118 121 126 127 129 131

5.8.	Основные энергетические теоремы
5.8	3.1. Теорема о взаимности работ
5.8	3.2. Теорема о взаимности перемещений
5.8	8.3. Теорема о взаимности реакций
5.8	3.4. Теорема о взаимности реакций и перемещений
5.9.	Определение перемещений при помощи фиктивных
	грузов
5.9	9.1. Развернутая формула фиктивных грузов, учитываю- щая влияние изгибающих моментов и продольных сил
5.9 5.9	 9.2. Построение фиктивной балки
Разлел 6.	метолы расчета статически неопределимых систем
0.1.	
0	1.1. Определение степени статической неопределимости
0. 6	1.2. Основная система и основные неизвестные
0.	1.5. Система канонических уравнении
0.	1.4. Определение коэффициентов и своюодных членов и
6	проверки правильности их определения
0.	1.5. Гешение системы канонических уравнении
0.	1.0. Построение эпор М, Q, N в заданной статически
6	Неопределимой системе и их проверки
0.	1.7. Гасчет на температурные воздействия
6.2	1.6. Гасчет на смещение опорных или других связей Метод перемещений
0.2. 6 (1 Определение степени кинематической неопредели.
0.2	мости (цисла неизрестных)
6 2	мости (числа псизвестных)
6.2	2.2. Сеповния спотема
0.2	внешней нагрузки
6 1	24 Определение коэффициентов и своболных членов
0.2	системы канонических уравнений
6 1	25 Проверки правильности определения реактивных
0.2	усилий и моментов
62	9.6 Решение системы линейных уравнений в матричной
0.2	honme
6 2	27 Построение эпкор <i>М. О. N</i> в заланной системе
6.2	2.8 Расчет на температурные возлействия
6.2	9 Расчет на смещение опорных связей
63	Смешанный метол
6.5. 6.4	Особенности расчета симметричных систем на несим-
0.1.	метричные возлействия
	are particular and a second se

6.5.	Метод перемещений в матричной форме	201
6.5	.1. Общие положения и предпосылки	201
6.5	.2. Уравнения равновесия. Статическая матрица	204
6.5	.3. Принцип двойственности статических и	
	геометрических уравнений	205
6.5	.4. Физические уравнения. Матрица жесткости	
	системы	206
6.5	.5. Разрешающая система уравнений	209
6.6.	Общие положения метода конечных элементов	212
6.6	.1. Подготовка расчета. Ввод исходных данных	215
6.6	5.2. Силовое воздействие	215
6.6	.3. Тепловое воздействие	216
6.6	.4. Осадка опор	217
6.6	5.5. Матрицы жесткости типовых стержневых	
	элементов	218
6.6	6.6. Формирование матрицы жесткости конструкции	221
6.6	5.7. Определение перемещений и усилий в элементах	223
Раздел 7.	Особенности расчета статически неопределимых	
	балок, арок, ферм	224
7.1.	Расчет неразрезных балок на упруго смещающихся	
	опорах на силовые воздействия	224
7.2.	Расчет неразрезных балок на упруго смещающихся	
	опорах на температурные воздействия	230
7.3.	Расчет неразрезных балок на упруго смещающихся	
	опорах на вынужденные смещения опорных или других	
	связей	232
7.4.	Линии влияния для балки на упруго смещающихся	
	опорах	235
7.5.	Расчет двухшарнирных арок	237
7.5	.1. Пример расчета двухшарнирной арки на действие	
	внешней нагрузки	241
7.5	.2. Линии влияния в сечениях двухшарнирной арки	244
7.6.	Расчет бесшарнирных арок	246
7.6	.1. Линии влияния в сечениях бесшарнирной арки	250
7.7.	Расчет статически неопределимых ферм	252
7.7	1. Расчет на действие внешней нагрузки	253
7.7	2.2. Расчет на заданные температурные воздействия	255
7.7	Расчет на смещение связей (неточность сборки)	256
7.7	.4. Расчет на подвижную нагрузку	256
7.7	.5. Пример расчета	258

Раздел 8.	Динамические расчеты конструкций	268
8.1.	Общие положения	268
8.2.	Поперечные колебания прямых брусьев	269
8.2.	1. Дифференциальное уравнение поперечных	
	колебаний	269
8.2.	2. Свободные колебания бруса	270
8.2.	3. Главные формы колебаний	271
8.2.	4. Вынужденные колебания бруса	275
8.3.	Продольные колебания прямых брусьев	278
8.3.	1. Дифференциальное уравнение продольных	
	колебаний	278
8.3.	2. Два основных вида решения	279
8.3.	3. Вынужденные продольные колебания	282
8.4.	Влияние постоянной осевой силы на поперечные	
	колебания бруса	284
8.5.	Расчет неразрезных балок на вибрационные воздейст-	• • -
	ВИЯ	287
8.5.	1. Общие теоремы	287
8.5.	2. Расчет неразрезных балок, загруженных одновре-	• • • •
0.5	менно на нескольких пролетах, методом сил	289
8.5.	3. Расчет неразрезных балок, загруженных на одном	207
0.5	пролете	297
8.5.	4. Расчет неразрезных оалок методом перемещении	305
8.5.	5. Расчет статически неопределимых рам методом	200
	перемещении	308
заключени	Е	312
		212
БИБЛИОГРАЧ	рическии список	313
Приложение	1. Численные значения функций $A_{sx}, B_{sx}, C_{sx}, D_{sx}$	314
Приложение	2. Значения начальных параметров для однопролет-	
	ных балок	317

ПРЕДИСЛОВИЕ

Предлагаемый вниманию читателей учебник написан на основании многолетнего опыта преподавания курса строительной механики в Харьковском национальном автомобильно-дорожном университете и в Украинской государственной академии железнодорожного транспорта. Содержание настоящего учебника вызвано современными требованиями к уровню подготовки инженеров-строителей транспортных сооружений, которым в своей практической деятельности приходится не только создавать новые конструкции, но и оценивать прочность, жесткость и устойчивость эксплуатируемых сооружений в связи с их реконструкцией. Исходя из этого в учебник включено только то важнейшее и необходимое, без чего нельзя создать стройного и законченного изложения предмета и что существенно необходимо инженеру в его ежедневной деятельности.

Укажем на наиболее существенные особенности настоящего учебного издания. В первом разделе «Общие положения» приведены виды сооружений и их особенности; нагрузки и воздействия; реальные сооружения и их расчетные схемы; кинематический анализ сооружений.

Во втором разделе в матричной форме изложены методы расчета многопролетных статически определимых балок на неподвижную и подвижную нагрузки и в связи с этим теория линий влияния.

Третий раздел посвящен статически определимым плоским фермам. Здесь дана классификация ферм, способы определения усилий, линии влияния усилий в балочных, консольных, консольно-балочных фермах с простой и сложной решеткой. Дан подробный пример расчета фермы аналитическим способом и по линиям влияния.

В четвертом «Распорные разделе системы» рассмотрены трехшарнирные арки с затяжкой и без нее, системы, включающие трехшарнирную трехшарнирные арку, рамы с разной высотой стойками; вертикальных стоек, С наклонными арочные системы, комбинированные Приведены расчеты системы. на подвижные И неподвижные нагрузки.

Пятый раздел «Теория перемещений» включает действительную и возможную работу сил, приложенных к упругой системе; общую формулу для определения перемещений, составленную из силовых, температурных перемещений, а также перемещений от смещения опорных или других связей. Приведены подробные примеры определения перемещений от указанных воздействий. В этом же разделе изложены основные энергетические теоремы и метод фиктивных грузов.

8

Шестой раздел посвящен методам расчета статически неопределимых систем. Здесь изложены такие классические методы: сил, перемещений, смешанный и основы метода конечных элементов, который расчета представлен как естественное распространение методов стержневых нестержневые (континуальные). систем на системы Построены матрицы жесткости для стержневых и балочных элементов.

В седьмом разделе рассмотрены особенности расчета статически неопределимых балок, арок, ферм. Неразрезные балки представлены на упруго смещающихся опорах. Рассмотрены силовые, температурные воздействия и воздействия, вызванные вынужденным смещением опорных связей. Описаны методы расчета двухшарнирных, бесшарнирных арок, статически неопределимых ферм на отмеченные выше воздействия с иллюстрирующими примерами.

Последний, восьмой, раздел посвящен динамическому расчету конструкций. Здесь рассмотрены поперечные и продольные колебания прямых брусьев. Получены соответствующие дифференциальные уравнения и их решения. Приведены расчеты неразрезных балок и рам на вибрационные воздействия с привлечением методов сил и перемещений с подробными примерами. Построены линии влияния в предположении, что масса груза мала по сравнению с массой балки.

В приложениях приведены численные значения функций A_{sx} , B_{sx} , C_{sx} , D_{sx} и значения начальных параметров для однопролетных балок.

При подготовке второго издания в текст включены дополнительные вопросы (метод перемещений в матричной форме и на этой основе – метод конечных элементов), которые представляются существенными для формирования инженерного мышления.

Автор выражает глубокую признательность рецензентам: д-ру техн. наук, проф. А.Ф. Яременко (зав. кафедрой строительной механики Одесской государственной академии строительства и архитектуры); д-ру проф. В.А. Гришину (зав. кафедрой теоретической техн. наук, И прикладной механики Одесского национального морского университета), техн. наук, проф. В.А. Баженову (зав. кафедрой строительной д-ру Киевского национального университета строительства механики И архитектуры).

В работе над рукописью и корректурами неоценимую помощь оказали канд. техн. наук, доц. М.А. Веревичева и инженер Р.Г. Павленко. Автор считает своим долгом выразить названным лицам свою сердечную благодарность.

Bce И пожелания будут приняты автором замечания с благодарностью. Письма по этому поводу прошу направлять по адресу: пл. Фейербаха, 7, 61050, Харьков, УкрГАЖТ, к. 1.118, кафедра строительной механики.

9

РАЗДЕЛ І

ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Предмет и задачи строительной механики

Строительная механика – наука, которая занимается разработкой принципов и методов расчета сооружений на прочность, жесткость и устойчивость. Если объектом изучения в сопротивлении материалов были преимущественно отдельные элементы сооружения, то объектом изучения в строительной механике, как правило, будет целое сооружение, из них составленное. Таково принципиальное различие между строительной механикой и сопротивлением материалов. Однако строгое разграничение обеих наук затруднительно, поскольку многие граничные вопросы могут быть отнесены к любой из них.

Прочность, устойчивость и жесткость сооружения зависят как от материала, размеров и формы его элементов, так и от внутренних сил, которые возникают и развиваются в сооружении при действии на него нагрузки, или других факторов. Можно сказать так, что размеры прочных и устойчивых элементов сооружения из данного материала и формы определяются величинами внутренних сил в этих элементах. Также внутренними силами определяются деформации элементов и всего сооружения в целом. Из сказанного следует: основная задача строительной механики состоит в разработке методов определения внутренних сил в сооружения и их перемещений.

При определении внутренних сил надо иметь в виду, что всякое сооружение под нагрузкой меняет свою форму – деформируется. При строгой постановке внутренние силы следовало бы определять в сооружении, находящемся в деформированном состоянии с учетом поведения нагрузки во время деформации сооружения. Однако это с большими трудностями, поскольку сопряжено внутренние силы сооружения В деформированном состоянии И его деформации взаимосвязаны. Даже если материал сооружения следует закону Гука, то, как правило, линейной зависимости между перемещениями и нагрузками не будет. Еще более осложняется задача в случаях, когда материал сооружения не следует закону Гука или работает за его пределом. Учитывая сравнительно малые изменения формы сооружения при его деформации, для упрощения расчета внутренние силы обычно определяют приближенно по начальному, недеформированному состоянию сооружения. Во многих случаях (но не всегда) точность определения внутренних сил практически приемлема. О том, что не всегда точность определения внутренних сил ПО недеформированному состоянию достаточна, необходимо помнить. особенно при расчетах, когда деформация сооружения может быть значительной (один из примеров такого рода приведен в п. 1.4).

10

1.2. Виды сооружений и их особенности

В зависимости от конструктивных решений сооружений целесообразно выделить ту систему элементов, которая в основном воспринимает действующую нагрузку. Различают следующие характерные типы систем: стержневые системы; системы, составленные из элементов, у которых размеры по двум направлениям (длина и ширина) значительно превосходят размер по третьему направлению (как известно, к этим элементам относятся пластины, плиты, оболочки); системы, у которых три размера одного и того же порядка (массивы, сплошные среды, тела); висячие системы.

Стержневые системы разделяются на плоские и пространственные. Например, к плоским стержневым системам относятся фермы (рис. 1.1, а), рамы (рис. 1.1, б), арки (рис. 1.1, в).

Рис. 1.1. Схемы сооружений, составленные из плоских стержневых систем: а – мост с пролетными строениями из ферм; б – промышленное здание с несущим элементом в виде рамы; в – арочный мост

На рис. 1.2 показана пространственная рама, которая часто применяется в качестве каркаса промышленных зданий.

Приведем пример сооружений второго типа. Это пластинчатые системы: несущие конструкции многоэтажных зданий, составленные из плоских панелей, и несущие пространственные конструкции в виде оболочек.

Рис. 1.2. Рама каркаса промышленного здания

На рис. 1.3 показана, например, свод-оболочка, составленная из плоских панелей.

Рис. 1.3. Схема свода-оболочки

К массивным системам, у которых все три размера имеют один порядок, относятся гидротехнические сооружения, например, плотины (рис. 1.4).

Рис. 1.4. Поперечное сечение бетонной плотины

К особому типу сооружений относятся висячие системы, с помощью которых можно перекрывать значительные пролеты (рис. 1.5).

Рис. 1.5. Схема висячего моста

В строительной механике рассматриваются методы определения усилий в системах всех перечисленных типов, однако главное внимание уделяется не особенностям расчета сооружений того или иного частного вида, а общим методам анализа напряженно-деформированного состояния (НДС) и принципам, на которых основаны эти методы.

1.3. Нагрузки и воздействия

В курсе сопротивления материалов мы познакомились с различными видами нагрузок, а именно сосредоточенными силами и распределенными нагрузками, а также с временными, постоянными, статическими и динамическими воздействиями. Напомним об этих видах нагрузок. Постоянная нагрузка действует непрерывно в течение всего срока службы сооружения, к ней относится, например, вес сооружения. Временная нагрузка имеет ограниченную продолжительность, например, вес снега на кровле, действие ветра на стены, нагрузка от проходящего поезда на мост и т. п. Статические нагрузки изменяются во времени настолько медленно, что ускорениями элементов конструкции при перемещениях можно пренебречь. Иначе говоря, при этом не учитываются силы инерции, связанные с перемещениями точек системы. Динамические нагрузки, в отличие от статических, изменяют свою величину и положение в сравнительно короткие промежутки времени. При действии динамических нагрузок приходится учитывать силы инерции как самой системы, так и расположенного на ней оборудования.

Помимо внешних сил, существенное влияние на сооружение воздействия, например, температура, оказывают другие осадка фундамента, землетрясение, действие огня, химическая агрессия, коррозия и т. п. При изменении температуры возникают деформации элементов сооружения, которые при определенных условиях вызывают внутренние силы и напряжения. Для ряда сооружений проводятся расчеты на действие огня. При горении здания от действия высокой температуры резко изменяются механические характеристики материала, из которого изготовлены его элементы. Вместе с этим меняется и сопротивляемость конструкции действующей нагрузке, что часто приводит к обрушению конструкции.

Весьма сложно ведет себя сооружение во время землетрясения. При движениях основания сооружение испытывает вынужденные колебания, вследствие чего возникают динамические напряжения. При этом конструкция получает большие ускорения, возникают значительные силы инерции и большие деформации, часто приводящие к разрушению.

Определение нагрузок является одним из вопросов анализа взаимодействия между сооружениями и внешней средой. Правильное решение этой задачи позволяет создавать надежные и экономичные сооружения.

1.4. Реальное сооружение и его расчетная схема

При изучении курса сопротивления материалов было показано, как составляется расчетная схема для простых сооружений. При графическом изображении расчетной схемы каждый стержень представляется одной линией – осью стержня. Такой же прием будем применять в строительной механике. Для примера на рис. 1.6 показана расчетная схема пространственной рамы.

Рис. 1.6. Расчетная схема пространственной рамы

В строительной механике большое внимание уделяется анализу соединений элементов. Узлы рам могут быть трех типов: жесткие, у которых сходящиеся элементы жестко соединены друг с другом, – при деформации системы отсутствуют взаимные повороты сечений примыкающих элементов; шарнирные, у которых все элементы или часть элементов свободно поворачиваются друг относительно друга; узлы с упруго-податливыми соединениями элементов (рис. 1.7) – здесь между стержнями 1-2, 1-3, 2-3 имеются упругие связи, которые имитируются пружинами, и при изменении угла между любой парой стержней надо преодолеть определенное сопротивление.

Рис. 1.7. Узел с упруго-податливыми соединениями элементов

Наиболее часто встречаются сооружения, для которых расчетная схема принимается состоящей из стержней и пластин. На рис. 1.8 показана схема каркасного здания, в котором несущими элементами являются колонны и перекрытия в виде пластин. В этом случае стены не показаны. Предполагается, что они из легких панелей и не передают нагрузку с одного этажа на другой.

Рис. 1.8. Расчетная схема каркасного здания

При расчете кирпичных или панельных зданий расчетная схема принимается состоящей из пластин, часть из которых имеет отверстия для оконных или дверных проемов. На практике встречаются самые разнообразные сооружения, а их расчетные схемы могут быть сложными, включающими в себя стержни, пластины, оболочки, массивные тела. Примером может служить расчетная схема для промышленного здания, состоящая из панельных плит, колонн и ферм перекрытия (рис. 1.9).

Рис. 1.9. Расчетная схема промышленного здания

При составлении расчетных схем приходится в первую очередь производить схематизацию геометрических форм сооружений. Наряду с этим необходимо учитывать свойства материала, из которого предполагается изготовлять его элементы. В курсе сопротивления материалов основное внимание уделялось работе стержней в пределах линейно-упругих деформаций. И в строительной механике значительное место будет отведено этому виду деформирования материала. При учете нелинейной диаграммы деформирования материала задача расчета сооружения относится к разряду так называемых физически нелинейных задач. Обычно это усложняет расчет и приводит к необходимости принимать какой-либо из методов последовательных приближений.

Выбор расчетной схемы связан также с действующей на сооружение нагрузкой.

Таким образом, под расчетной схемой следует понимать геометрическую схему сооружения с действующей нагрузкой и данными, характеризующими физико-механические свойства материала.

Остановимся еще на одном вопросе. При расчете сооружений приходится определять перемещения отдельных точек. В большинстве случаев эти перемещения малы по сравнению с размерами сооружения или его элементов. Однако встречаются задачи, в которых приходится учитывать изменение геометрии сооружения вследствие возможных перемещений. Такие задачи во многих случаях приводят к нелинейным уравнениям и называются геометрически нелинейными. Их решения обычно проводятся так же, как и физически нелинейных задач, методами последовательных приближений. В качестве примера можно указать на расчет висячих мостов больших пролетов (рис. 1.5). Изменение очертания кабеля моста хотя и не очень велико, но оно существенно сказывается на распределении нагрузки, передающейся с кабеля на балку. Изгибающие моменты в балке существенно меняются. Таким образом, сама расчетная схема в процессе загружения изменяется, как бы деформируется, и поэтому расчет проводится по деформированной схеме.

Рассмотрим присоединение конструкций к основанию (земле). Опоры, все шарниры которых являются шаровыми, показаны на рис. 1.10, а, б, в.

Рис. 1.10. Типы опорных устройств

Опора на рис. 1.10, а допускает поворот вокруг трех осей и поступательное перемещение по любому направлению на поверхности (5 степеней свободы). Эта опора носит название шарнирно-подвижной опоры. Предполагается, что опираемое тело прижато к шару внешними силами, и отделиться от него не может.

На рис. 1.10, б показана опора, допускающая поступательное движение по направлению оси Y и поворот вокруг трех осей (4 степени свободы). На рис. 1.10, в – опора, допускающая вращение вокруг неподвижной точки C (три степени свободы). Опоры, приведенные на рис. 1.10, б, в, называются шарнирно-неподвижными. Защемление (заделка) (рис. 1.10, г) – это опорное устройство, в котором число степеней свободы равно нулю. Следовательно, тело, присоединенное с помощью такой опоры, не имеет линейных смещений вдоль осей X, Y и Z и поворотов относительно всех трех осей.

Для прикрепления сооружений к земле, помимо шаровых шарниров, могут использоваться и цилиндрические (рис. 1.10, д, е). Опора, показанная на рис. 1.10, д, имеет две степени свободы (поворот и поступательное перемещение вдоль оси X), а опора (см. рис. 1.10, е) обладает одной степенью свободы (поворот относительно оси Z).

1.5. Кинематический анализ сооружений

Реальные сооружения должны быть неизменяемыми системами, способными воспринимать нагрузку без заметного изменения геометрии. Инженер до детального расчета системы должен уметь проанализировать ее структуру или, как еще говорят, исследовать образование системы, т. е. установить, является ли она геометрически неизменяемой (геометрически неизменяемой называется такая система, в которой изменение формы обуславливается лишь деформацией материала). Кроме того, необходимо знать, возможен ли расчет системы с помощью только уравнений равновесия, т. е. является ли система статически определимой или же она статически неопределима.

Расчетные схемы многих сооружений имеют вид кинематических цепей, составленных из отдельных частей-дисков (диск – часть стержневой системы, неизменяемость которой доказана). С этих систем и начнем анализ.

1.5.1. Определение числа степеней свободы сооружений, составленных из дисков, соединенных между собой шарнирами

Степенью свободы какого-нибудь тела и системы тел называется число геометрических параметров, которые независимо друг от друга могут изменяться во время движения системы (тела) и определяют ее положение. Начнем с изучения плоских систем. Плоская фигура (рис. 1.11, а) имеет в своей плоскости три степени свободы. Положение ее на плоскости определяется тремя независимыми переменными: двумя координатами X и Y какой-либо точки A и углом наклона φ какой-либо прямой AB.

Рис. 1.11. Положение плоской фигуры на плоскости

Цилиндрический шарнир с неподвижной геометрической осью (рис. 1.11, б), вокруг которой фигура может вращаться, эквивалентен двум связям. Действительно, точка A теряет две степени свободы, и единственным независимым параметром движения остается угол φ . Могут встретиться иногда такие цепи, в которых несколько шарниров насажено на одну ось. Такой шарнир следует рассматривать как несколько шарниров, так как он стесняет взаимное движение нескольких дисков. Мы будем называть его кратным шарниром. Так, например, шарнир, связывающий между собой три стержня (диска), следует рассматривать как сдвоенный шарнир (рис. 1.12).

Рис. 1.12. Схема сдвоенного шарнира

Вообще шарнир, связывающий n дисков, играет роль (n-1) простых шарниров. Так как диск, ничем не стесненный в своем движении, имеет в плоскости три степени свободы, то общее число степеней свободы при игнорировании связей составило 3D. Каждый шарнир эквивалентен двум связям, а опорный стержень — одной связи. На основании сказанного степень свободы рассматриваемого типа сооружения можно определить следующим образом:

$$W = 3D - 2III - C_0. \tag{1.1}$$

Если W>0, то система обладает подвижностью; если W=0, то число связей составляет необходимый минимум; при W<0 число связей превышает минимум (система подвижна).

Из формулы (1.1) получим условие геометрической неизменяемости и неподвижности при минимальном числе связей:

$$3D = 2III + C_0. \tag{1.2}$$

Число лишних связей (*W* < 0) найдем следующим образом:

$$\pi = -W = C_0 + 2\Pi - 3D.$$
(1.3)

Определим по формуле (1.3) число лишних связей, которые имеет замкнутый контур в раме, показанной на рис. 1.13, а.

Рис. 1.13. Схема рамы, имеющей замкнутый контур

Замкнутый контур можно рассматривать как диск с тремя соединительными стержнями (дисками), рис. 1.13, б. Здесь $C_0 = 3$; Ш = 6; D = 4. Тогда $Л = 3 + 2 \cdot 6 - 3 \cdot 4 = 3$. Это значит, что замкнутый бесшарнирный контур в раме имеет три лишние связи.

Для рам, имеющих несколько замкнутых контуров (рис. 1.14), число лишних связей может быть определено по следующей простой формуле:

$$J = 3 \mathrm{K} - \mathrm{III}, \qquad (1.4)$$

где ^Ш – число всех простых шарниров, включая и опорные (при этом землю надо включать в состав дисков системы).

Рис. 1.14. К определению числа лишних связей в рамах, имеющих замкнутые контуры

Рама, показанная на рис. 1.14, имеет 5 замкнутых контуров и 9 простых шарниров. В соответствии с формулой (1.4) число лишних связей в ней равно 6. Для пространственных рам степень статической неопределимости можно найти по формуле

$$\Pi = 6 \text{ K} - 3 \text{ III} .$$
 (1.5)

1.5.2. Определение числа степеней свободы шарнирно-стержневой системы (фермы)

Рассмотрим такие системы, у которых стержни (диски) шарнирно соединены между собой, причем каждый диск содержит два шарнира простых или кратных. Степень свободы таких систем можно изучать по формулам, которые даны выше, – (1.1), (1.4), но для них можно вывести и другие формулы. Примем центры шарниров за отдельные точки, могущие перемещаться в пространстве. Число таких точек или узлов обозначим через Y, число дисков или стержней через C, число опорных стержней – C_0 . Если бы узлы не были взаимно связаны при помощи стержней, то каждый из них имел бы: в плоскости две степени свободы и суммарную степень свободы, равную 2Y; в пространстве – 3Y. Каждый стержень, соединяющий две точки A и B (рис. 1.15), эквивалентен одной связи, так как налагает на координаты этих точек единственное условие – сохранение постоянного расстояния между последними. Полное число связей составляет $C + C_0$, где C_0 – число опорных связей.

Рис. 1.15. К определению числа степеней свободы в фермах

Итак, число степеней свободы шарнирно-стержневой плоской системы равно

$$W = 2Y - C - C_0.$$
(1.6)

В ферме, показанной на рис. 1.15, Y = 5, C = 7, $C_0 = 3$ и W = 0, т. е. конструкция имеет необходимый минимум связей.

Для пространственной фермы

$$W = 3Y - C - C_0.$$
(1.7)

1.5.3. Мгновенно изменяемые системы

Если мы в геометрически неизменяемой системе будем изменять длину тех или иных стержней, то получим ряд систем, имеющих одну и ту же структуру, но отличающихся между собой длиной и наклоном стержней. Существуют, однако, такие вариации, которые обладают свойством геометрической изменяемости. Такие системы, существование которых было замечено еще В 1837 г., называются мгновенно изменяемыми. Название подсказывается тем, что при непрерывном варьировании формы системы, т. е. при непрерывном изменении какогонибудь из ее геометрических параметров, она будет изменяемой только при одном "мгновенном" значении этого параметра.

Проанализируем систему, показанную на рис. 1.16.

Рис. 1.16. К анализу геометрической изменяемости систем

Эта система, с точки зрения ее неизменяемости, имеет минимально необходимое число стержней и связей. По формуле (1.1) $W=3\cdot 2-2\cdot 1-4=0$; по формуле (1.4) $\Pi=3\cdot 3-9=0$. Система неподвижная и неизменяемая.

Будем теперь варьировать параметром α . При $\alpha = 0$ стержни *AC* и *CB* лежат на одной прямой. Если мы разъединим стержни *AC'* и *C'B* в точке *C'*, то правый конец стержня *AC'* переместится по окружности 2, а левый конец *BC'* – по окружности 1. Но эти окружности имеют общую касательную, следовательно, общий бесконечно малый элемент. Поэтому

соединение обоих стержней в точке C' не мешает бесконечно малому перемещению общей точки C'. Рассматриваемая система AC'Bмгновенно изменяема. Системы, точки которых способны перемещаться без изменения геометрических размеров с точностью до малых высшего порядка, называются мгновенно изменяемыми.

Иная картина при $\alpha \neq 0$ (система *ACB*): окружности 1 и 2 не имеют общей касательной, поэтому одновременное бесконечно малое перемещение общей точки *C* по обеим окружностям невозможно.

Вычислим горизонтальную реакцию *Н*. Для этого возьмем сумму моментов левых сил относительно точки *С*

$$\frac{F}{2}\ell-H\cdot\ell\sin\alpha=0,$$

отсюда

$$H=\frac{F}{2\sin\alpha}.$$

При малом угле α возникает большая горизонтальная реакция. Таким образом, системы, близкие к мгновенно изменяемым, плохо воспринимают нагрузку. При $\alpha = 0$ $H = \infty$. Можно сказать, что в мгновенно изменяемых системах некоторые усилия равны бесконечности.

Если сооружение по своей структуре геометрически неизменяемо, то система уравнений статики является определенной. Это значит, что при любой нагрузке все усилия, определяемые из этой системы уравнений, будут определенными конечными. Если система уравнений И неопределенная, это значит, что при произвольной нагрузке уравнения статики либо нельзя удовлетворить никакими конечными значениями усилий (все или некоторые усилия равны бесконечности), либо можно удовлетворить бесконечным множеством значений усилий (все или некоторые усилия равны неопределенности или бесконечности). Укажем также на признаки, по которым можно определить мгновенную изменяемость:

1) два диска соединены тремя и более стержнями, пересекающимися в одной точке (рис. 1.17);

Рис. 1.17. Первый признак мгновенной изменяемости

2) два диска соединены шарниром и стержнем, проходящим через шарнир (рис. 1.18).

Рис. 1.18. Второй признак мгновенной изменяемости

B заключение пункта система, геометрически отметим: связей, неизменяемая И не имеющая лишних всегда статически определима; наоборот, система статически определимая – геометрически неизменяема и не имеет лишних связей. Каждой нагрузке системы, геометрически неизменяемой и не имеющей лишних связей, соответствует единственная система значений всех усилий, короче говоря, единственное решение.

1.5.4. Примеры кинематического анализа сооружений

Приведем примеры определения числа степеней свободы и последующего анализа геометрической структуры сооружений. На рис. 1.19 показана многопролетная балка.

à)

Рис. 1.19. Схема многопролетной статически определимой балки (а) и схема взаимодействия (этажная схема) ее дисков (б)

Для показанной на рис. 1.19 расчетной схемы A = 5, III = 4, $C_0 = 7$, *W*=0. Система имеет необходимый минимум связей. Она статически определима. Докажем. что эта балка является геометрически неизменяемой. Для анализа геометрической структуры составим схему взаимодействия (этажную схему). Диски BC и DE являются основными, они неподвижно связаны с основанием наземными опорами. Диски АВ и EF с одной стороны опираются на опоры A и F, а с другой – на диски BC и DE. Диск CD не имеет связи с наземными опорами и с обеих сторон опирается на диски BC и DE. Горизонтальная неподвижность всех дисков многопролетной балки обеспечивается одной неподвижной опорой части (диска) *BC*.

Подсчет числа стержней, дисков, шарниров является, как видим, операцией весьма важной, в особенности в тех случаях, когда изучаемая система более или менее сложна. Однако эта операция недостаточна. Она должна быть дополнена анализом геометрической структуры. В подтверждение этого рассмотрим еще две балки, показанные на рис. 1.20.

Рис. 1.20. К анализу геометрической неизменяемости сооружения

Первая система (рис. 1.20, а) действительно геометрически неизменяема и неподвижна; вторая балка (рис. 1.20, б) имеет в левой части лишний опорный стержень, а в правой – одну степень свободы, хотя обе балки имеют одинаковое количество стержней, шарниров, дисков.

На рис. 1.21 изображены различные системы, прикрепленные к земле при помощи трех стержней.

Рис. 1.21. Схемы прикреплений плоских сооружений к основанию

Системы на рис. 1.21, в, д являются изменяемыми, так как прикрепляющие стержни пересекаются в одной точке, относительно которой возможен малый поворот. Рама на рис. 1.21, г является также изменяемой, так как прикрепляющие стержни параллельны между собой. Остальные системы (рис. 1.21, а, б, е) неизменяемы. Для всех систем $\mathcal{A} = 1$, $\mathcal{III} = 0$, $C_0 = 3$. Укажем также простое расположение шести опорных стержней, которое всегда гарантирует неподвижное прикрепление пространственного типа (рис. 1.22): в точке *A* расположены три опорных стержня, не лежащие в одной плоскости; в точке *B* плоскости стержней не проходят через точку *A*; в точке *C* стержень не пересекает прямую *AB*.

Рис. 1.22. Схема расположения опорных стержней для неподвижного закрепления тела

МНОГОПРОЛЕТНЫЕ СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ БАЛКИ

Из всех построенных мостов наиболее распространены мосты балочной системы, или балочные мосты, благодаря простоте конструкции, ясности статической схемы и наибольшей пригодности для выполнения в сборном варианте. Многопролетными статически определимыми (шарнирно-консольными) балками, которые применяются в качестве несущих конструкций мостов и других сооружений называется совокупность балок, опирающихся на наземные опоры и связанных между собой промежуточными шарнирами.

2.1. Расчет многопролетных статически определимых балок на неподвижную нагрузку

Анализируя схему статически определимого сооружения (рис. 2.1) с геометрической или кинематической точки зрения, в большинстве случаев можно различить основную часть, которая сама по себе геометрически неизменяема и неподвижна, и другие элементы, которые к ней прикреплены и от нее заимствуют свою неподвижность и неизменяемость (см. п. 1.5.4).

Рис. 2.1. Схема многопролетной статически определимой балки

Основная часть отличается от опирающихся на нее элементов следующим признаком: если последние будут разрушены или удалены, то основная часть все же остается неподвижной и неизменяемой; наоборот, если основная часть будет разрушена, то вместе с ней рухнет и все то, что на нее опирается. Например, балка АД является основной частью по отношению к двум остальным балкам. Нагрузка, расположенная на основной балке (части) статически определимого сооружения, вызывает усилия только в этой части; напротив, нагрузка, расположенная на прикрепленной части, вызывает усилия как в этой части, так и в той, которая служит для нее основной. Покажем, что это действительно так.

Пусть нагрузка приложена к основной балке. Предположим, что усилия в балках *DF* и *FH* равны нулю. Для балки *AD* можно получить решение, которое будет также удовлетворять условиям равновесия всего сооружения. Так как двух различных решений, удовлетворяющим всем условиям равновесия, быть не может, то справедливость утверждения доказана.

Теперь можно сформулировать порядок построения эпюр внутренних сил.

- 1. Строится схема взаимодействия элементов балки (этажная схема).
- 2. Известными из курса сопротивления материалов методами строим эпюры *N* и *Q* для каждой балки в отдельности. Нагрузка нижележащих на схеме взаимодействия балок складывается из заданной нагрузки и реакций в шарнирах, вызванных нагрузками на вышележащие балки.

2.1.1. Матричная форма расчета

Использование матричного языка линейной алгебры упрощает программирование решений задач строительной механики на ЭВМ, помогает инженеру более широко смотреть на многие проблемы расчетов, видеть их сущность, не вдаваясь в детали, в смысл каждой арифметической операции над числами. Изложим основы матричной формы расчета балок на неподвижную нагрузку.

Произвольное усилие S_i в сечении балки может быть, как известно, определено следующим образом:

$$\boldsymbol{s}_{i} = (\boldsymbol{s}_{i1}\boldsymbol{s}_{i2}\cdots\boldsymbol{s}_{in}) \begin{pmatrix} \boldsymbol{F}_{1} \\ \boldsymbol{F}_{2} \\ \vdots \\ \boldsymbol{F}_{n} \end{pmatrix}, \qquad (2.1)$$

где $S_{ik}(k=1,2,...,n)$ – искомое усилие S_i от соответствующей k-й единичной силы $F_k = 1$.

По правилам линейной алгебры произведение строчки на столбец равно алгебраической сумме попарных произведений их элементов, т. е.

$$S_{i} = S_{i1}F_{1} + S_{i2}F_{2} + \cdots S_{in}F_{n}.$$
(2.2)

Для вычисления в конкретном расчете внутренних сил S₁, S₂,...,S_m имеем следующие выражения:

Выражения (2.3) аналогично выражению (2.1) можно записать в виде

$$\begin{pmatrix} s_{1} \\ s_{2} \\ \vdots \\ s_{m} \end{pmatrix} = \begin{pmatrix} s_{11} & s_{12} \cdots s_{1n} \\ s_{21} & s_{22} \cdots s_{2n} \\ \vdots \\ s_{m1} & s_{m2} \cdots s_{mn} \end{pmatrix} \begin{pmatrix} F_{1} \\ F_{2} \\ \vdots \\ F_{n} \end{pmatrix}.$$
 (2.4)

Обозначим: вектор-столбец, характеризующий нагрузки, через

$$\mathbf{r} = \left[\begin{array}{c} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{array} \right]; \tag{2.5}$$

вектор-столбец внутренних сил

$$\boldsymbol{\boldsymbol{\varsigma}} = \begin{bmatrix} \boldsymbol{\boldsymbol{\varsigma}}_{1} \\ \boldsymbol{\boldsymbol{\varsigma}}_{2} \\ \boldsymbol{\boldsymbol{\varsigma}}_{m} \end{bmatrix}; \qquad (2.6)$$

матрицу коэффициентов уравнений (2.3), (2.4)

$$\boldsymbol{L} = \begin{bmatrix} \boldsymbol{S}_{11} & \boldsymbol{S}_{12} & \cdots & \boldsymbol{S}_{17} \\ \boldsymbol{S}_{21} & \boldsymbol{S}_{22} & \cdots & \boldsymbol{S}_{27} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{S}_{m1} & \boldsymbol{S}_{m2} & \cdots & \boldsymbol{S}_{m7} \end{bmatrix}.$$

$$(2.7)$$

С помощью обозначений (2.5), (2.6), (2.7) равенства (2.3) или (2.4) можно записать кратко:

$$\vec{S} = L\vec{F} . \tag{2.8}$$

Матрица L называется матрицей влияния внутренних сил. Это прямоугольная матрица порядка $m \times n$. Она имеет m строк и n столбцов, так как число вычисляемых внутренних сил m и число независимых нагрузок n в общем случае различно. Составление этой матрицы эквивалентно решению в общем виде задачи вычисления внутренних сил в заданной многопролетной балке от нагрузки заданного вида. Если составлена матрица влияния L, то вычисление внутренних сил от заданной нагрузки сводится к формальной операции умножения матрицы на заданный числовой вектор. Понятие матрицы влияния тесно связано с понятием эпюры внутренних сил. Физический смысл каждого элемента матрицы S_{ik} – это величина i -го усилия от $F_k = 1$. Например, 1-й столбец матрицы L состоит из величин внутренних сил от $F_1 = 1$. Другими словами, этот столбец состоит из ординат соответствующих эпюр внутренних сил от единичной нагрузки $F_1 = 1$. Аналогично каждый k-й столбец матрицы L состоит из ординат эпюры внутренних сил от $F_k = 1$.

2.1.1.1. Пример расчета

Расчетная схема заданной балки показана на рис. 2.2, а.

Балки 1-8 и 14-17 являются основными, так как они неподвижно связаны с землей. Балка 8-12 с одной стороны связана с землей, а с другой – опирается на балку 1-8 – заимствует у нее две недостающие для неподвижности связи. Балка 12-14 не имеет связей с землей, поэтому она с обеих сторон опирается на балки 8-12 и 14-17. Горизонтальная неподвижность всех элементов многопролетной балки обеспечивается

неподвижной опорой 17. Схема взаимодействия элементов балки показана на рис. 2.2, б.

Как было отмечено выше (см. п. 2.1.1), каждый элемент матрицы L (2.7) S_{ik} – это величина *i* -го усилия от $F_k = 1$. Поэтому, чтобы составить матрицы влияния, необходимо построить единичные эпюры. Для этого поочередно к заданной балке прикладываются единичные нагрузки: $F_1 = 1$, $F_2 = 1$, q = 1, M = 1. Рассчитать балку на действие единичных и неединичных нагрузок удобнее при помощи схемы взаимодействия. При этом отдельные части балки рассматриваются как однопролетные балки (см. п. 2.1). Расчет начинается с самых «верхних» балок и последовательно переходит к нижележащим, причем, кроме нагрузки, непосредственно к ним приложенной, учитывается давление от вышележащих балок, равное опорным реакциям последних, но с обратным направлением. Ha рис. 2.2, в – к показаны единичные эпюры, построенные с использованием схемы взаимодействия. Впрочем, построить эти эпюры можно было, рассматривая балку целиком. При этом нужно составить три независимых уравнения равновесия для всей системы и дополнительные уравнения равновесия частей балки в форме моментов относительно каждого шарнира. Такой путь является более громоздким.

Рис. 2.2. Расчетная схема многопролетной статически определимой балки (а), схема взаимодействия (б), единичные эпюры (в) – (к), окончательные эпюры (л), (м)

Составим матричное уравнение для определения изгибающих моментов:

M_1		0	0	0	0		0		
M_2		-2	0	0	0		0		
<i>M</i> ₃		-2	0	0	0		0	ļ	
M_4		-1	3/2	3/2	0		0		
M_5		-1	3/2	3/2	0		20		
M_6		0	0	3	0		0		
M ₇		0	0	3	0		0		
<i>M</i> ₈		0	0	0	0		0		
M9	=	0	0	-15/4	0	=	30		
<i>M</i> ₁₀		0	0	-15/2	0		0		
M ₁₁		0	0	0	0		0		
<i>M</i> ₁₂		0	0	0	0		10		
<i>M</i> ₁₃		0	0	25/8	0		0		
<i>M</i> ₁₄		0	0	0	0		0		
<i>M</i> ₁₅		0	0	-5	0		0		
<i>M</i> ₁₆		0	0	-5	1		15		
<i>M</i> ₁₇		0	0	-25/2	1_		0		

Вычисляем изгибающие моменты в сечениях многопролетной балки и строим эпюру моментов (рис. 2.2, м).

Матричное уравнение для определения поперечных сил имеет следующий вид:

$\left[Q_{1} \right]$]	[-1	0	0	0]	$\begin{bmatrix} 0 \end{bmatrix}$	
<i>Q</i> ₂		-1	0	0	0		0	
<i>Q</i> ₃	ļ	1/3	1/2	1/2	0		0	
<i>Q</i> ₄		1/3	1/2	1/2	0		0	
<i>Q</i> 5		1/3	-1/2	1/2	0		20	
<i>Q</i> ₆		1/3	-1/2	1/2	0		0	-
<i>Q</i> ₇		0	0	-3/2	0		0	
<i>Q</i> ₈		0	0	-3/2	0		0	
<i>Q</i> 9	=	0	0	-3/2	0	=	30	. (2.10)
<i>Q</i> ₁₀		0	0	-3/2	0		0	
<i>Q</i> ₁₁		0	0	5/2	0		0	
<i>Q</i> ₁₂		0	0	5/2	0		10	
<i>Q</i> ₁₃		0	0	0	0		0	
<i>Q</i> ₁₄		0	0	-5/2	0		0	
<i>Q</i> ₁₅		0	0	-5/2	0		0	
<i>Q</i> ₁₆		0	0	-5/2	0		15	
<i>Q</i> 17		0	0	-5/2	0_		0	

Эпюра поперечных сил показана на рис. 2.2, л. Здесь же показаны численные значения поперечных сил, подсчитанные в соответствии с формулой (2.10).

2.2. Расчет многопролетных статически определимых балок на подвижную нагрузку

Современные сооружения часто приходится рассчитывать на подвижную нагрузку. По сооружениям перемещаются краны, поезда, автомобили и т. п. Нагрузка в этом случае может рассматриваться как система связанных друг с другом грузов с заданными расстояниями между ними, например расстояниями между осями колесных пар поезда. При больших скоростях движения необходимо в расчетах учитывать силы инерции, возникающие при деформации системы. Но, полагая, что скорости движения грузов достаточно малы, будем пренебрегать этими силами инерции. В задачах расчета по недеформированной схеме статически определимых систем на подвижную нагрузку общим и универсальным является метод линий влияния. В п. 2.1.1 мы убедились в загружений единичными возлействиями: vдобстве прежле чем производить расчеты на конкретные сложные загружения, удобно выполнить расчеты на простые единичные нагрузки и составить матрицы влияния L (2.7). Тогда расчеты на реальные загружения сведутся к операции умножения матрицы на вектор (2.8). Реализация этой идеи оказывается наиболее полезной в расчетах на подвижную нагрузку. Сначала следует изучить, как изменяется усилие S_i при движении по сооружению единичной силы F = 1, и построить график изменения S_i . Затем этот график можно использовать для определения опасного загружения. Вообще следует отметить, что особенностью расчетов на статическую подвижную нагрузку является решение дополнительных задач на отыскание расчетного загружения, т. е. определение самого опасного положения нагрузки, при котором искомое усилие S_i достигает максимума или минимума.

Итак, линией влияния любого усилия S_i называется график изменения этого усилия при движении по сооружению груза F = 1.

Необходимо иметь четкое представление о том, что на графике является независимой переменной и что функцией. Независимая переменная – координата движущегося груза, функция – изучаемая величина. Время t в уравнение линий влияния не входит, так как движение груза предполагается настолько медленным (об этом говорилось выше), что последний в любом своем положении может считаться неподвижным. Правильнее было бы сказать, что линия влияния (л.в.) выражает собой влияние груза не движущегося, а стоящего неподвижно, но точка приложения которого может иметь любую абсциссу X.

Сравним эпюру внутренних сил с линией влияния. Эпюра дает возможность обозреть сразу распределение интересующей нас величины по всем сечениям стержня, но только для одного, совершенно определенного положения нагрузки. Линия влияния, наоборот, дает

возможность обозреть сразу закон изменения какой-нибудь величины, относящейся к определенному сечению стержня, при всевозможных положениях единичного груза. Однако она ничего не говорит об изменении аналогичной величины, относящейся к другому сечению стержня. И еще. Будем применять статический способ построения линии влияния: груз F = 1 устанавливаем в произвольное положение; абсциссу его точки приложения в произвольно выбранной системе координат обозначим X; считая груз неподвижным, определяем искомую величину как функцию от X; для того чтобы полученная формула преобразовалась в уравнение линии влияния, считаем в ней значение X переменным.

2.2.1. Линии влияния опорных реакций в простых балках

Рассмотрим вначале двухконсольную балку (рис. 2.3).

Рис. 2.3. Линии влияния опорных реакций в двухконсольной однопролетной балке

Линия влияния *R*_A**.** Начало координат примем в точке А. Рассмотрим три положения единичного груза.

Груз на участке AB $(\ell \ge x \ge 0)$.

Составляем условие равновесия

$$\sum \boldsymbol{M}_{\boldsymbol{B}} = 0: \quad \boldsymbol{R}_{\boldsymbol{A}}\ell - \mathbf{1}(\ell - \boldsymbol{x}) = 0.$$

Отсюда находим величину опорной реакции

$$R_A=\frac{\ell-x}{\ell}.$$

Чтобы перейти к уравнению линии влияния R_A , считаем X переменной величиной. При x = 0 $R_A = 1$ и при $x = \ell$ $R_A = 0$.
Груз на участке BD $(\ell + e) \ge x \ge \ell$. Уравнение равновесия $\sum M_B = 0$ имеет вид

$$R_{\mathcal{A}}\ell+l(\boldsymbol{x}-\ell)=0.$$

Снова находим из этого уравнения R_A :

$$R_A = -\frac{x-\ell}{\ell}.$$

Получаем: при $x = \ell$ $R_A = 0$; при $x = (\ell + e)$ $R_A = -\frac{e}{\ell}$.

Груз на участке СА $f \ge x \ge 0$. Начало координат по-прежнему в точке A, но положительное направление оси абсцисс принято справа налево, т. е. от точки A к точке C.

Составим уравнение равновесия

$$\sum \boldsymbol{M}_{\boldsymbol{B}} = 0: \qquad \boldsymbol{R}_{\boldsymbol{A}}\ell - \mathbf{I}(\boldsymbol{x}-\ell) = 0.$$

Найдем отсюда величину опорной реакции R_A :

$$R_A = \frac{x + \ell}{\ell}$$

Считаем X переменной величиной и вычисляем: при x = 0 $R_A = 1$; при x = f $R_A = \frac{\ell + f}{\ell}$.

График R_A представляет собой прямую линию (рис. 2.3, б), так как во все вышеприведенные расчетные формулы X входит в первой степени. Аналогично строим линию влияния опорной реакции R_B (рис. 2.3, в).

Построим также линию влияния опорной реакции в консольной балке (рис. 2.4, а).

Рис. 2.4. Линия влияния опорной реакции в консольной балке

Составим уравнение равновесия в форме проекций всех сил, действующих на балку на вертикальную ось

$$\sum F = 0 : \quad R_A - 1 = 0 ,$$

отсюда

 $R_A = 1$.

Полученная формула показывает, что опорная реакция не зависит от абсциссы X. Поэтому график R_A будет таким, как на рис. 2.4, б.

2.2.2. Линии влияния изгибающих моментов в сечениях простых балок

Построим линии влияния моментов в сечениях двухконсольной однопролетной балки (рис. 2.5, а).

Рис. 2.5. Линии влияния изгибающих моментов в сечениях двухконсольной однопролетной балки

Линия влияния М

Рассматриваем два положения единичной нагрузки. Груз F = 1 справа от сечения (участок I-D).

Рассмотрим левую отсеченную часть балки. Из условия равновесия этой части имеем

$$M_I = R_A a_I$$

Следовательно, линия влияния M_l на участке I-D будет такой же, как линия влияния R_A (рис. 2.3, б), все ординаты которой увеличены в "*a*" раз.

Груз справа от сечения I (участок I-C). Рассмотрим правую отсеченную часть балки. Из условия равновесия этой части имеем

$$M_I = R_B b$$
.

Отсюда заключаем, что линия влияния M_I на участке I-С будет такой же, как линия R_B (рис. 2.3, в) на этом участке, ординаты которой увеличены в "*b*" раз. График линии влияния M_I показан на рис. 2.5, б. Из этого графика следует, что изгибающий момент в сечении I достигает

максимальной положительной величины, если груз расположен в сечении I. При нахождении груза в точках С и D изгибающий момент в сечении I меняет знак на обратный, т. е. с плюса на минус.

Линия влияния Ми, и

При построении линии влияния момента в сечениях, расположенных бесконечно близко слева и справа от опоры, не следует делать различия между сечениями II и III, так как расстояние между ними ничтожно мало и, следовательно, оно на пренебрежимо малую величину изменяет плечо единичной силы и величину момента.

Начало координат поместим в точке А. Если единичный груз расположен на участке AD, то из условия равновесия левой отсеченной части балки видно, что $M_{II,III} = 0$. Пусть теперь единичный груз перемещается от точки A до точки C. Тогда, рассматривая равновесие той же левой части, имеем

$$M_{11,111} = -1x$$

Теперь нетрудно построить линию влияния $M_{II,III}$ (рис. 2.5, в). Аналогично рассуждая, построим линию влияния M_{IV} (рис. 2.5, г).

В консольной балке (рис. 2.6, а) построим линии влияния моментов в точке А и сечении I.

Рис. 2.6. Линии влияния моментов в консольной балке

Линия влияния М_А

Начало координат поместим в точку А. Расстояние до груза обозначим через X. Причем $0 \le x \le \ell$. Определим изгибающий момент в точке А:

$$M_A = -1 x$$
.

При x = 0 $M_A = 0$ и при $x = \ell$ $M_A = -\ell$. Линия влияния показана на рис. 2.6, б.

Линия влияния M₁

Если груз расположен на участке A - I, то изгибающий момент в сечении I равен нулю. Это видно, если посмотреть на правую часть балки. Если груз перемещается по участку IB, то

$$M_I = -1(x - a), \quad a \le x \le \ell.$$

 $\Pi p_{H} x = 0 \quad M_{I} = 0 \quad H \quad \Pi p_{H} x = \ell \quad M_{I} = -1 \cdot b.$

График показан на рис. 2.6, в.

2.2.3. Линии влияния поперечных сил в сечениях простых балок

в предыдущих случаях, с двухконсольной Начнем, как И однопролетной балки (рис. 2.7, а).

Рис. 2.7. Линии влияния поперечных сил в сечениях однопролетной двухконсольной балки

Линия влияния Q₁

Груз на участке I-D. Рассматриваем равновесие левой отсеченной части балки

$$Q_{\rm I}=R_A$$
.

Следовательно, линия влияния Q_1 на участке I-D будет такой же, как и линия влияния R_A на этом участке. Аналогично, при движении груза по участку I-С имеем

$$Q_1 = -R_B$$

и линия влияния Q_1 на этом участке будет такой же, как и линия влияния R_B , все ординаты которой умножены на (-1). Линия влияния Q_1 показана на рис. 2.7, б.

Линия влияния Q_{II}

Сечение II расположено справа от опоры A на бесконечно близком расстоянии. Таким образом, реакция R_A расположена в левой отсеченной части балки, а реакция R_B – в правой. При построении линии влияния Q_{II} , как и ранее, рассматриваем два положения единичной нагрузки. При движении груза по участку II-D (справа от сечения) $Q_{II} = R_A$, а при движении груза по участку II-C $Q_{II} = -R_B$. Таким образом, на участке II-D линия влияния Q_{II} имеет вид линии влияния R_A , а на участке II-C – R_B (см. рис. 2.7, в).

Линия влияния Q_{III}

Сечение III расположено на бесконечно близком расстоянии, но слева от опоры. В этом случае реакции R_A и R_B относятся к правой отсеченной части балки. При движении груза по участкам III-D и III-C для нахождения поперечной силы в сечении III рассматриваем левую отсеченную часть балки (свободный конец). Если груз расположен на участке III-D $Q_{III} = 0$, а если на участке III-C – $Q_{III} = -1$ (см. рис. 2.7, г). Аналогично строится линия влияния Q_{IV} (рис. 2.7, д). При построении линий влияния в сечениях консольной балки (рис. 2.8, а) начало координат помещаем в точке А для линии влияния Q_A (рис. 2.8, б), в сечении I – для линии влияния Q_1 (рис. 2.8, в) и для нахождения необходимых усилий рассматриваем условия равновесия правой отсеченной части балки (свободный конец).

Рис. 2.8. Линии влияния поперечных сил в сечениях консольной балки

2.2.4. Связь матрицы влияния и линии влияния

Установим связь матрицы влияния (2.7) и линии влияния. Рассмотрим простой пример: составим матрицу влияния изгибающих

моментов для балки, загруженной несколькими вертикальными силами (рис. 2.9).

Рис. 2.9. Схема балки, загруженной сосредоточенными силами (a), и эпюры моментов (б) – (е)

Матрица влияния изгибающих моментов для изображенной на рис. 2.9 балки имеет следующий вид:

$$L_m = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ -f & 0 & 0 & 0 & 0 \\ -\frac{bf}{\ell} & 0 & \frac{ab}{\ell} & 0 & -\frac{ae}{\ell} \\ 0 & 0 & 0 & 0 & -e \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Рассмотрим элементы первой строки этой матрицы. Они представляют собой значение момента M_1 от единичных сил $F_1 = 1$, $F_2 = 1$, $F_3 = 1$, $F_4 = 1$, $F_5 = 1$. Но можно эти элементы рассматривать и как значения моментов M_1 от одной и той же силы F = 1, перемещающейся вдоль балки (рис. 2.10).

Рис. 2.10. Линии влияния M_1 , M_2 , M_3 , M_4 , M_5

Таким образом, элементы каждой строки матрицы *L_m* представляют собой ординаты соответствующей ей линии влияния.

2.2.5. Линии влияния при узловой передаче нагрузки

Во многих реальных сооружениях нагрузка перемещается не по основной несущей конструкции, а по верхнему строению. Оно представляет собой систему продольных и поперечных балок, которые передают нагрузку на основную конструкцию в узлах (рис. 2.11, а).

Рис. 2.11. Построение линий влияния при узловой передаче нагрузки

При построении линий влияния усилий в основной конструкции необходимо учитывать узловую передачу нагрузки. Для этого вначале мысленно уберем верхнее строение и построим искомую линию влияния в предположении, что груз перемещается по основной конструкции. Далее можно выделить узловые ординаты, которые остаются такими же и для линии влияния в заданной конструкции: положение груза под узлом эквивалентно его положению на основной конструкции. К найденным узловым ординатам необходимо добавить крайние нулевые ординаты (см. рис. 2.11, а, б). Когда груз находится в этих положениях, система не работает, потому $M_k = 0$ и $Q_k = 0$.

Докажем, что между узлами любая линия представляет собой прямую. Рассмотрим участок AB, показанный на рис. 2.11, a (рис. 2.12).

Рис. 2.12. К доказательству вида линии влияния между узлами

При произвольном положении груза на левую А и правую В опоры передается давление, соответственно равное (рис. 2.12, а)

$$\frac{d-x}{d}$$
 и $\frac{x}{d}$.

Совместное влияние этих двух неподвижных, но переменных по величине сил выразится формулой

$$z = \left(\frac{d-x}{d}\right) y_A + \frac{x}{d} y_B,$$

которая представляет собой уравнение прямой, соединяющей верхние концы ординат У_A и У_B.

Итак, для получения линии влияния, отвечающей действию узловой нагрузки, необходимо спроектировать узлы на линию влияния, построенную для случая непосредственной передачи нагрузки, и проекции смежных узлов соединить прямыми линиями (рис. 2.11, б, в).

2.2.6. Кинематический метод построения линий влияния

Построение линий влияния – одна из задач статического расчета. Эту задачу можно также решить кинематическим методом, который следует считать универсальным методом статического расчета.

Рассмотрим вначале простой пример. Найдем усилие, которое возникает в балке AB при движении груза *F*, например реакцию опоры A (рис. 2.13, а).

Рис. 2.13. К построению л.в. *R*_A кинематическим методом

Удалим опорный стержень, в котором возникает интересующая нас реакция, и заменим ее силой (рис. 2.13, б). Характер сооружения в этом случае изменится, из геометрически неизменяемого и неподвижного оно превратится в кинематическую цепь с одной степенью свободы, т. е. в механизм. При произвольном значении силы X этот механизм не будет в равновесии, и стержень АВ будет двигаться вниз или вверх. Только при одном, совершенно определенном значении этой силы, будет существовать равновесие. Найдем эту силу. Для этого рассмотрим бесконечно малое отклонение балки как абсолютно жесткого стержня (см. пунктир на рис. 2.13, б). Составим суммарную работу сил X и F и приравняем ее нулю, так как мы хотим, чтобы балка находилась в равновесии:

$$F\delta_F - X\delta_X = 0,$$

откуда

$$X = F \frac{\delta_F}{\delta_X}$$

Величины δ_F и δ_x – бесконечно малые и, следовательно, неопределимы. Однако отношение между ними является конечным, совершенно определимым по величине и знаку. Выразим вертикальные перемещения δ_F и δ_x следующим образом (см. рис. 2.13, а, б):

$$\delta_F = X \operatorname{tg} \alpha,$$
$$\delta_X = \ell \operatorname{tg} \alpha.$$

Тогда

$$X=\frac{x}{\ell}.$$

Полученная формула и есть уравнение линии влияния опорной реакции R_A (рис. 2.13, в). Знаки ординат линии влияния устанавливаются просто. На участке ВС перемещения δ_x и δ_F имеют одинаковые знаки, на участке BD – разные. В первом случае их отношение положительно, во втором – отрицательно. Таким образом, на участке BC ординаты л.в. положительны, на участке BD – отрицательны. Следует обратить внимание на то, что знак отношения не зависит от того, повернулась ли балка по часовой стрелке или против.

Покажем, как построить линии влияния изгибающего момента и поперечной силы кинематическим методом (рис. 2.14, а, б, в).

Рис. 2.14. К построению линий влияния изгибающего момента и поперечной силы кинематическим методом

Линия влияния M_I . Для освобождения балки от связи, в которой возникает изгибающий момент, поставим в сечение I шарнир. Перемещение механизма показано на рис. 2.14, б пунктиром. Поместим груз на участке I-В. Составим, как и в предыдущем случае, уравнение работ

$$X(\alpha+\beta)-1\cdot\delta_F=0,$$

откуда

$$X = \frac{\delta_F}{\alpha + \beta} = \frac{\delta_X \frac{x}{b}}{\frac{\delta_X}{a} + \frac{\delta_X}{b}} = \frac{ax}{\ell}.$$

Это уравнение описывает линию влияния M_1 на участке I-D. Для получения уравнения л.в. M_1 при движении груза по участку I-C необходимо провести аналогичные рассуждения.

Линия влияния Q_1 . Отбросим в сечении I связь, препятствующую взаимному вертикальному перемещению обеих частей балки. Две другие связи, из которых одна препятствует взаимному продольному перемещению, а другая – взаимному повороту, мы должны сохранить. Возможное вертикальное перемещение механизма будет состоять в повороте левой части вокруг точки A, а правой – вокруг точки B на один и тот же угол α . Очевидно, что прямые BI и AI останутся параллельными между собой.

Составим уравнение работ:

$$X\left(\frac{a}{\ell}+\frac{b}{\ell}\right)-1\cdot\delta_F=0\,,$$

откуда

$$X = \frac{\delta_F}{\frac{a}{\ell} + \frac{b}{\ell}} = \frac{x}{\ell}.$$

Аналогично построим линию влияния на участке I-С.

2.2.7. Линии влияния для многопролетных статически определимых балок

При построении линий влияния для многопролетной статически определимой балки сначала строим линию влияния в пределах одного звена, в котором находится исследуемое сечение или опора, рассматривая его как однопролетную балку, а затем линию влияния распространяем на остальные звенья (однопролетные балки), опирающиеся на рассматриваемое (непосредственно или через другие звенья). При этом необходимо учитывать следующие правила: если груз перемещается по основному звену, то он вызывает усилия только в сечениях основного звена; если груз перемещается по второстепенному звену, то он вызывает усилия как в сечениях второстепенного звена, так и в сечениях звена, на которое он опирается; если груз расположен над наземной опорой, то он полностью воспринимается этой опорой. Следуя этим правилам, в пределах каждой второстепенной балки линия влияния представляет собой отрезок прямой, начинающийся от крайней ординаты соседней основной через нуль балки И проходящий под противоположной опорой второстепенной балки. Таким образом, над всеми шарнирами, соединяющими однопролетные балки, линия влияния имеет переломы.

Рассмотрим построение линии влияния для многопролетной статически определимой балки на примере (рис. 2.15, а).

Вначале построим схему взаимодействия элементов балки (рис. 2.15, б). Перейдем теперь к построению линии влияния момента в сечении І. Рассматривая звено ВЕ, в котором находится сечение І как однопролетную двухконсольную балку, строим линию влияния на этом участке (см. рис. 2.5, в). Слева на это звено опирается балка АВ. При положении груза в точке А (наземная опора) он воспринимается опорой и не вызывает изгибающего момента в исследуемом сечении І.

Рис. 2.15. Построение линий влияния в сечениях многопролетной балки (а) статическим (в) и кинематическим способами (г)

Следовательно, в точке А ордината линии влияния *М*₁ равна нулю. Поэтому проводим прямую, соединяющую крайнюю ординату линии влияния M_1 (под шарниром В) с нулем в точке А. Справа на звено ВЕ опирается балка ЕК, а на балку ЕК – звено КМ. Нулевые ординаты линии *M*₁ на этих участках расположены в точках F и L. Таким влияния образом, линия влияния M₁ на участках ЕК и КМ представляет собой наклонные прямые с нулевыми ординатами в точках F и L (наземные опоры) и переломами в точках Е и К (промежуточные шарниры). Для иллюстрации кинематического метода определим форму линии влияния *R_c*. Удалим опорный стержень С, заменив его усилием. Дадим полученной системе с одной степенью свободы возможное перемещение (рис. 2.15, г). Эпюра перемещений и будет представлять собой линию влияния *R_c* в определенном масштабе. Применяя принцип возможных перемещений, можно определить и ординаты построенной линии влияния *R*_c. Однако они проще определяются при статическом методе построения л.в. Кинематический метод обычно применяется для проверки формы линий влияния, построенных для сложных систем статическим методом.

2.2.8. Загружение линий влияния неподвижной нагрузкой

После построения линии влияния какого-либо усилия по ее ординатам можно вычислить это усилие от заданной вертикальной нагрузки в виде нескольких сосредоточенных сил, распределенной нагрузки Q(x), моментной нагрузки m(x). Процесс определения усилия с помощью линии влияния называется загружением линии влияния.

2.2.8.1. Определение усилий от сосредоточенных сил

Пусть на сооружение действует нагрузка, состоящая из нескольких параллельных сосредоточенных F_1 , F_2 , ..., F_n , занимающих определенное положение. Требуется определить усилие, для которого линия влияния известна, от этой нагрузки (рис. 2.16). Для общности линия влияния показана в виде кривой.

Если бы на сооружение действовала только сила F_1 и если бы последняя, кроме того, была равна единице, усилие выразилось бы ординатой Y_1 . Поэтому значение S_i можно определить согласно принципу суперпозиции:

$$S_i = F_1 y_1 + F_2 y_2 + \dots + F_n y_n = \sum_{i=1}^n F_i y_i.$$
 (2.11)

Итак, чтобы вычислить какой-либо фактор (опорную реакцию, изгибающий момент, поперечную силу и т. д.) от нескольких сосредоточенных сил, надо на построенной для этого фактора линии влияния измерить ординаты под грузами и найти алгебраическую сумму произведений величин грузов на соответствующие им ординаты линии влияния.

Рассмотрим пример. Найдем момент в сечении А консольной балки от заданной нагрузки *F* по л.в. (рис. 2.17, а).

Рис. 2.17. Определение изгибающего момента по л.в.

Сначала построим л.в. *М*_А (рис. 2.17, б). В соответствии с формулой (2.11) получим

$$M_A = 50 \cdot 5 - 100 \cdot 2 = 50 \,\mathrm{kHm}.$$

Здесь учтены знаки для сосредоточенных сил (сосредоточенные силы считаются положительными, если они направлены сверху вниз) и ординат линии влияния ("плюс" – вверху и "минус" – внизу).

2.2.8.2. Определение усилий от распределенной нагрузки

Обозначим интенсивность нагрузки в произвольной точке через Q_x (рис. 2.18, а).

Рис. 2.18. К определению усилий по л.в. от распределенной нагрузки

Выделим из графика интенсивностей q_x бесконечно узкую полоску, площадь которой равна $q_x dx$. Примем величину $q_x dx$ за сосредоточенную нагрузку. По построенной линии влияния (рис. 2.18, б) можно определить усилие от этой бесконечно малой нагрузки:

$$(q_x dx) y$$
.

Суммируя величины этих элементарных нагрузок, найдем

$$S = \int_{A}^{B} q_{x} y_{x} dx. \qquad (2.12)$$

В случае равномерно распределенной нагрузки, когда

$$S = q \int_{A}^{B} y_{x} dx = q w.$$
(2.13)

Полученная формула (2.13) позволяет сделать следующее заключение: чтобы вычислить какой-либо фактор от равномернораспределенной нагрузки, необходимо на построенной для этого фактора линии влияния определить площадь загруженного участка и умножить ее на интенсивность нагрузки.

 $q_x = q = \text{const}$

Может так случиться, что площадь W складывается из участков, имеющих разные знаки. Под величиной W во всех случаях понимается алгебраическая сумма ее участков. Обратим внимание еще на одно обстоятельство, вытекающее из формулы (2.13): форма линии влияния не играет никакой роли, важна лишь ее площадь.

Рассмотрим пример. Для балки, показанной на рис. 2.19, а, найдем изгибающий момент в сечении I – *M*₁.

Рис. 2.19. К определению усилий от равномерно распределенной нагрузки

Линии влияния искомых усилий построены на рис. 2.19, б, в. В соответствии с формулой (2.13) получаем

$$M_{1} = -10 \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot 3 = -\frac{90}{4} \text{ KHM};$$
$$R_{A} = -10 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 3 = -\frac{30}{4} \text{ KH}.$$

2.2.8.3. Определение усилий от сосредоточенного момента

Загрузим произвольную линию влияния парой сил (см. рис. 2.20, а):

$$F_1 = -\frac{1}{a}, \quad F_2 = \frac{1}{a}.$$

Рис. 2.20. К определению усилий по линиям влияния от сосредоточенного момента

Момент этой пары сил равен единице (рис. 2.20, б). Пусть уравнение линии влияния имеет вид

$$y = f(x)$$

Суммарное усилие от обеих сил равно

$$S = -\frac{1}{a}f(x) + \frac{1}{a}f(x+a) = \frac{f(x+a) - f(x)}{a}.$$
 (2.14)

Когда $a \to 0$, формула (2.14) приобретает вид

$$S = \frac{f(x + dx) - f(x)}{dx} = \frac{df}{dx} = f'(x).$$
 (2.15)

Таким образом, производная от линии влияния какой угодно величины по независимой переменной X представляет собой построенную в функции от той же переменной линию влияния, выражающую влияние движущейся сосредоточенной пары с моментом, равным единице.

От произвольных моментов усилие определяется по следующей формуле:

$$S = \sum_{i=1}^{k} m_i y'_i$$
, (2.16)

где m_i — действующие на балку сосредоточенные моменты; y'_i — производная линии влияния в месте приложения сосредоточенных моментов (тангенс наклона касательной к горизонтали).

Если линия влияния имеет вид прямой линии, то формулу (2.16) можно записать таким образом:

$$S = \sum_{i=1}^{k} (\pm m_i) (\pm tq\alpha_i). \qquad (2.17)$$

Сосредоточенный момент считается положительным, если он направлен по часовой стрелке; $tg \alpha_i$ положителен, если функция y = f(x) возрастающая, и отрицательный – если убывающая.

Приведем пример определения усилий от сосредоточенного момента (рис. 2.21, а).

Рис. 2.21. К определению усилий по л.в. от сосредоточенного момента

Найдем изгибающие моменты, расположенные бесконечно близко слева и справа от сечения С. Линия влияния M_C показана на рис. 2.21, б.

$$M_C^{\text{лев}} = -10 \cdot \frac{1}{3} = -\frac{10}{3} \text{ кHm.}$$

 $M_C^{\text{пр}} = 10 \cdot \frac{2}{3} = \frac{20}{3} \text{ кHm.}$

Поясним знаки изгибающего момента и тангенсов углов наклона линии влияния к горизонтали. Изгибающий момент положителен, так как направлен по часовой стрелке. На участке AC функция линии влияния возрастающая (+), а на участке CB – убывающая (-).

2.2.9. Загружение линий влияния подвижной нагрузкой

Рассмотрим более сложный случай, когда нагрузка представляет собой систему связанных грузов, перемещающихся по сооружению. Допустим вначале, что система связанных грузов перемещается по одному прямолинейному участку л.в. S_i , а остальные участки не загружены (рис. 2.22).

Рис. 2.22. Об одном свойстве прямолинейного участка

линии влияния

Продолжим прямолинейный участок до пересечения с осью абсцисс. Найдем усилие от системы сосредоточенных сил (см. формулу (2.11)):

$$S = \sum_{i=1}^{n} F_{i} y_{i} = F_{1} y_{1} + F_{2} y_{2} + F_{3} y_{3} =$$
$$= F_{1} x_{1} tg \alpha + F_{2} x_{2} tg \alpha + F_{3} x_{3} tq \alpha = tg \alpha \sum_{i=1}^{n} F_{i} x_{i} . \qquad (2.18)$$

Но так как сумма моментов нескольких сил относительно точки О (рис. 2.22) равна моменту их равнодействующей R, то в формуле (2.18) можно заменить

$$\sum_{i=1}^{n} F_i x_i = R x_0$$

и тогда

$$S = \operatorname{tg} \alpha R x_0 = R y_0. \tag{2.19}$$

Итак, приходим к следующему выводу: если система связанных грузов находится на прямолинейном участке линии влияния, то при загружении линии влияния можно заменить эти грузы равнодействующей *R*.

Наиболее часто встречающимся случаем является загружение треугольной линии влияния (рис. 2.23).

Рис. 2.23. Невыгодное загружение треугольной линии влияния

Найдем усилие от системы грузов, показанных на рис. 2.23. Предположим, что груз F_5 находится на бесконечно близком расстоянии слева от вершины л.в.

$$S = \operatorname{tg} \alpha \sum_{i=1}^{5} F_{i} x_{i} + \operatorname{tg} \beta \sum_{i=6}^{7} F_{i} (a - b - x_{i}). \qquad (2.20)$$

Возьмем первую производную функции (2.20)

$$\frac{ds}{dx} = \operatorname{tg} \alpha \sum_{i=1}^{5} F_{i} - \operatorname{tg} \beta \sum_{i=6}^{7} F_{i} . \qquad (2.21)$$

До тех пор, пока ни один груз не стоит над вершиной, производная (2.21) имеет определенное значение. Допустим, что система связанных грузов (поезд) передвигается слева направо, т. е. в сторону возрастания X.

Если при каком-либо положении поезда получается, что

$$\frac{ds}{dx} > 0$$
,

то *S* – возрастающая функция, следовательно, поезд не дошел до наиболее невыгодного загружения.

Если

$$\frac{ds}{dx} < 0$$
,

то функция *S* убывающая, и, следовательно, самое невыгодное загружение уже пройдено. Таким образом, искомое положение поезда характеризуется тем, что в момент перехода через него производная $\frac{ds}{dx}$ изменяет свой знак на обратный. Легко убедиться, что критическим может быть только такое положение поезда, при котором один из грузов стоит под вершиной линии влияния. При переходе любого груза через вершину линии влияния величина производной $\frac{ds}{dx}$ внезапно изменяется, так как в правой части формулы (2.21) слагаемое, содержащее эту силу, переводится из первой суммы во вторую, или наоборот. Как видим, производная (2.21) не является непрерывной. Вот почему наибольшее значение *S* не может быть найдено из условия

$$\frac{ds}{dx}=0$$
,

нулевого значения производной вообще говоря не будет.

Допустим, что критическим грузом является груз F_5 . Тогда при расположении груза слева от вершины $\frac{ds}{dx} > 0$, а при расположении справа от вершины $-\frac{ds}{dx} < 0$, т. е.

$$tg \alpha \sum_{i=1}^{5} F_{i} - tg \beta \sum_{i=6}^{7} F_{i} > 0;$$

$$tg \alpha \sum_{i=1}^{4} F_{i} - tg \beta \sum_{i=5}^{7} F_{i} < 0.$$
(2.22)

Заменяя в системе неравенств (2.22) $\operatorname{tg} \alpha = \frac{c}{a}, \operatorname{tg} \beta = \frac{c}{b};$ $R_{\text{лев}} = F_1 + F_2 + F_3 + F_4, R_{\text{пр}} = F_6 + F_7, \text{получим}$

$$\frac{R_{\pi e_{B}} + F_{\kappa p}}{a} > \frac{R_{\pi p}}{b};$$

$$\frac{R_{\pi e_{B}}}{a} < \frac{F_{\kappa p} + R_{\pi p}}{b}.$$
(2.23)

Эта система неравенств является аналитическим признаком критического груза. Решение, удовлетворяющее условиям (2.23), будет иметь реальный смысл только в том случае, если при установке поезда в найденное критическое положение ни один из его грузов не сойдет с сооружения. Если же это произойдет, то анализ придется произвести снова, учитывая лишь те грузы, которые расположены на сооружении (в пределах линии влияния).

Для линии влияния с вершиной в начале длины загружения невыгоднейшее загружение определяется по формуле

$$F_1 \ell > a_k (F_2 + F_3 + \dots + \dots),$$
 (2.24)

где F_1 – первый груз (наиболее тяжелый), поставленный над вершиной линии влияния, кH (тс);

 F_2, F_3, \dots – остальные грузы на линии влияния, кН (тс);

ℓ – длина загружения линии влияния, м;

a_k – расстояние между первым и вторым грузом, м.

После определения невыгодного положения нагрузки S_{max} можно вычислить по формулам (2.18), (2.20). Далее можно действие подвижной нагрузки заменить некоторой условной нагрузкой, равномерно распределенной по всей длине линии влияния. Она называется эквивалентной нагрузкой, которая вычисляется при невыгоднейшем положении подвижного состава по формуле

$$\boldsymbol{q}_{\scriptscriptstyle \mathsf{3KB}} = \frac{\sum\limits_{i=1}^{H} \boldsymbol{F}_i \boldsymbol{y}_i}{\boldsymbol{w}_k}, \qquad (2.25)$$

где F_i – нагрузка от поезда на рельсе (кH, тс);

*У*_{*i*} – ордината линии влияния под *i* -м грузом;

 w_k – площадь загружаемой линии влияния, м².

РАЗДЕЛ З

СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ ПЛОСКИЕ ФЕРМЫ

Фермой (об этих конструкциях мы упоминали в п. 1.2 и 1.5.2) будем называть геометрически неизменяемую систему, составленную из стержней, шарнирно связанных между собой концами. При узловой передаче нагрузки каждый стержень фермы испытывает продольные усилия, т. е. осевое растяжение или сжатие. Когда стержень работает исключительно на продольные силы, материал может быть использован более выгодно, и затрата его уменьшается. Этим достигается двоякая экономия, так как уменьшая собственный вес конструкции, мы экономим на материале не только непосредственно, но и косвенно, благодаря уменьшению постоянной нагрузки.

3.1. Классификация ферм

Классификацию ферм проведем по следующим признакам: по назначению фермы; по типу опирания; по характеру очертания внешнего контура; по типу решетки.

В зависимости от назначения различают фермы пролетных строений мостов (рис. 3.1, а), стропильные фермы (рис. 3.1, б), фермы каркасов промышленных цехов (рис. 3.1, в), крановые фермы (рис. 3.1, г) и др.

Рис. 3.1. Типы ферм в зависимости от назначения: а – ферма пролетного строения моста; б – стропильная ферма с надстройкой для фонаря; в – ферма каркаса промышленного цеха; г – ферма подъемного крана

По типу опирания фермы могут быть балочными (рис. 3.2, а), арочными (рис. 3.2, б); консольными (рис. 3.2, в); консольно-балочными (рис. 3.2, г).

Рис. 3.2. Классификация ферм по типу опирания: а – балочная ферма; б – арочная ферма; в – консольная ферма; г – консольно-балочная ферма

По характеру очертания различают фермы с параллельными поясами (рис. 3.1, а) и ломаным или полигональным расположением поясов (рис. 3.1, б) и фермы треугольного очертания (рис. 3.2, а).

По типу решетки фермы делятся на фермы с треугольной решеткой (рис. 3.1, а); фермы с раскосной решеткой (рис. 3.1, б, 3.2, а); фермы с полураскосной решеткой (рис. 3.2, в); фермы с ромбической решеткой (рис. 3.2, г); фермы с составной решеткой (составной решеткой называют обычно решетку, состоящую из простой основной решетки раскосного или треугольного типа и дополнительных элементов – шпренгелей) (рис. 3.3).

Задача увеличения высоты фермы может быть рационально решена при введении в состав каждой панели дополнительных двухопорных фермочек – шпренгелей, опирающихся на узлы основной фермы. Стержни таких фермочек работают лишь на местную нагрузку, т. е. на нагрузку, приложенную в пределах их пролетов. Вертикальная местная нагрузка, действующая на шпренгель, передается в узлы основной фермы, которая является для шпренгеля опорами (рис. 3.3). На рис. 3.3, а, б изображены одноярусные шпренгели, которые передают местную нагрузку, приложенную к нижнему (верхнему) поясу, в узлы нижнего (верхнего) пояса. На рис. 3.3, в, г изображены двухъярусные шпренгели, которые местную нагрузку, приложенную к нижнему (верхнему) поясу, передают в узлы верхнего (нижнего) пояса фермы.

Рис. 3.3. Фермы с составной решеткой: а, б – фермы с одноярусными шпренгелями; в, г – фермы с двухъярусными шпренгелями

3.2. Определение усилий в стержнях ферм

Если ферма геометрически неизменяема и не имеет лишних связей, то она статически определима (см. п. 1.5.2), т. е. все ее усилия могут быть определены из уравнений статики. Как известно, эти уравнения могут составляться различными способами – в форме уравнений моментов или уравнений проекций. Общий способ определения усилий в статически определимой ферме состоит в том, чтобы путем разрезания ее на те или иные части получить столько независимых друг от друга уравнений статики, сколько неизвестных усилий содержит рассматриваемая ферма. Вся теория определения усилий в фермах сводится к выработке таких правил проведения разрезов и сечений, которые обеспечили бы системе уравнений наибольшую простоту. Различные методы, фигурирующие в теории ферм, представляют собой ни что иное, как различные методы составления уравнений статики.

3.2.1. Способ вырезания узлов

Одним из простейших способов получения уравнений, содержащих минимальное количество неизвестных, является проведение таких разрезов, из которых каждый отсекает от фермы по одному узлу (рис. 3.4, a, б).

Рис. 3.4. К определению усилий в фермах способом вырезания узлов

Для аналитического решения задачи нужно задаться положительным направлением усилий. Предположим, что оба они направлены от узла, т. е. растянуты (рис. 3.4, б).

Составим уравнения равновесия:

$$\sum Y = 0: \quad R_{A} + S_{A-1} \sin \alpha = 0, \quad S_{A-1} = -R_{A} / \sin \alpha;$$

$$\sum X = 0: \quad S_{A-6} + S_{A-1} \cos \alpha = 0, \quad S_{A-6} = R_{A} / tg\alpha.$$

Выделяя при помощи таких разрезов все узлы фермы, получим как раз такое количество уравнений, которое необходимо для определения усилий во всех стержнях фермы. Таким образом, определение усилий в ферме способом вырезания узлов представляет собой многократное повторение одной и той же несложной операции. Существенную роль играет выбор надлежащей последовательности перехода от узла к узлу; в любой стадии расчета следует вырезать новый узел, в котором осталось лишь два неизвестных усилия. С аналитической точки зрения, такая операция представляет собой ни что иное, как решение двух уравнений с двумя неизвестными, затем подстановку найденных значений в следующие два уравнения, содержащие, кроме этих уже известных, еще два новых и т. д. Такая цепная зависимость между неизвестными отражается на точности результатов расчета.

При вырезании узлов часто встречаются некоторые простые случаи, решение которых может быть получено раз и навсегда в общем виде. Это

ненагруженный двухстержневой узел (рис. 3.5, а), ненагруженный трехстержневой узел, в котором оси двух стержней направлены по одной прямой (рис. 3.5, б); трехстержневой узел с одиночным стержнем и с нагрузкой, действующей по направлению последнего (рис. 3.5, в); узел с одиночным стержнем произвольном трехстержневой при направлении нагрузки (рис. 3.5, г); ненагруженный четырехстержневой узел, в котором оси стержней направлены по двум прямым (рис. 3.5, д).

Рис. 3.5. Частные случаи равновесия узлов

3.2.2. Способ сечений (способ моментной точки)

Рассмотрим ферму (рис. 3.6).

Рис. 3.6. К определению усилий в стержнях ферм способом сечений (стержни 2-3, 8-3, 8-7)

Рассечем ферму на две части, проводя разрез так, чтобы в него попало не более трех стержней. Попавшие в сечение стержни заменяем усилиями. Направляем усилие к сечению (от узлов). Определяем точки попарного взаимного пересечения усилий S_{2-3} , S_{8-3} , S_{8-7} . Это точки "8", "0", "3". Составляем три уравнения статики в форме уравнения моментов относительно этих точек:

$$\sum M_{8}^{\text{neB}} = 0 : R_{A}d + S_{2-3}h_{1} = 0;$$

$$\sum M_{0}^{\text{neB}} = 0 : R_{A}a - F_{1}(d + a) + S_{8-3}h_{3} = 0;$$

$$\sum M_{3}^{\text{neB}} = 0 : R_{A}2d - F_{1}d - S_{8-7}h_{2} = 0.$$

При таком способе составления уравнений каждое из них будет содержать только одну неизвестную. Такой путь менее подвержен неточностям, чем изложенный ранее в п. 3.2.1. Кроме того, он может иметь преимущество в том случае, когда требуется определить усилие только в одном стержне или в небольшой группе стержней, до которых при пользовании способом вырезания узлов пришлось бы добираться издалека. В разрезе может быть и более трех стержней с неизвестными усилиями, если все неизвестные, кроме одной, пересекаются в одной точке (рис. 3.7).

Рис. 3.7. К определению усилий в стержнях ферм способом сечений (стержень 3-4)

Например, для нахождения усилия S_{3-4} необходимо составить уравнение моментов левых или правых сил (выбирается та часть фермы, которая содержит меньшее количество сил) относительно моментной точки "10":

$$\sum M_{10}^{\text{np}} = 0: R_B 3d - F_3 2d + S_{3-4}h = 0.$$

Не обязательно проводить разрез через три стержня, его можно проводить через любое количество стержней, лишь бы в числе их было не более трех стержней, имеющих неизвестные усилия и не пересекающихся в одной точке.

Рассмотрим еще один частный случай, когда из трех пересеченных стержней два параллельны друг другу (рис. 3.8).

Рис. 3.8. К определению усилий в стержнях способом проекций

Найдем усилие в стержне *S*₂₋₇. Два из трех пересеченных стержней параллельны друг другу – пересекаются в бесконечности.

Составим уравнение в форме проекций на вертикальную ось:

 $\sum F_{y}^{\text{neb}} = 0$: $R_{A} - F_{1} - S_{2-7} \cos \alpha = 0$.

3.2.3. Способ замены связей

Рассмотрим ферму, показанную на рис. 3.9, а.

Рис. 3.9. Определение усилий способом замены стержней: а – заданная ферма; б – преобразованная ферма

Попытаемся преобразовать данную ферму, удалив один из ее стержней и вставив вместо него другой стержень на новом месте. Эта операция представляет собой наиболее интересную часть расчета, так как ее можно произвести разнообразными способами, среди которых надо выбрать достаточно удачный. Заменяющая (преобразованная) ферма должна выбираться так, чтобы она заведомо была геометрически неизменяемой и в то же время поддавалась простому расчету. Удалим стержень 2-В и поставим его в другое место, например, А-4. Загрузим преобразованную ферму двумя взаимно противоположными силами X, приложенными по концам заменяемого стержня 2-В, и внешней нагрузкой F. Полученная таким образом преобразованная ферма показана на рис. 3.9, б.

Определим усилие в стержнях преобразованной фермы. Для того чтобы усилия во всех стержнях преобразованной фермы совпали с их усилиями в заданной ферме, необходимо, чтобы в узлах В и 2 были приложены силы, каждая из которых равна действительному усилию стержня 2-В. Величина X может быть найдена из условия, что усилие в стержне A-4 (рис. 3.9, б) равно нулю:

$$S_1X+S_F=0,$$

 $X = -\frac{S_F}{S_1},$

отсюда

где *S_F* – усилие в стержне А-4 от заданной внешней нагрузки;

 S_1 – усилие в стержне A-4 от X = 1.

Так как преобразованная ферма заведомо геометрически неизменяема, то величины S_F и S_1 должны иметь совершенно определенные, конечные значения. Более того, величина S_1 служит характеристикой заданной фермы. Если $S_1 \neq 0$, то заданная ферма также геометрически неизменяема, а если $S_1 = 0$, то она мгновенно изменяема. Вот таким способом мы можем произвести кинематический анализ заданной фермы.

Найдя значение X, можно определить все усилия уже обычным путем, последовательно вырезая узлы или проводя сечения.

В более сложных случаях приходится произвести две замены стержней или даже более.

3.3. Линии влияния усилий в фермах

При построении линий влияния в фермах единичный груз перемещается либо по верхнему (езда поверху), либо по нижнему поясу (езда понизу). Для построения линий влияния статическим способом так же, как и при аналитическом расчете, рассматривается равновесие узлов и частей фермы. При использовании способа сечений записываем уравнения равновесия отсеченной части фермы при положении подвижного груза слева от рассеченной панели и справа. Уравнения равновесия следует записать для той части фермы, где они проще. В результате получаем уравнения левой и правой ветвей линии влияния. Каждая ветвь справедлива до соответствующей границы рассеченной панели. Границами рассеченной панели называются ближайшие от проведенного сечения узлы того пояса, по которому движется единичный груз. В пределах

64

рассеченной панели между ветвями проводим прямую линию. Левая и правая ветви линии влияния пересекаются под моментной точкой.

Если для построения линии влияния будем использовать способ вырезания узлов, рассматриваем равновесие вырезанного узла при положении груза в этом узле и вне его. Полученные ординаты линии влияния соединяем прямыми линиями. Проиллюстрируем сказанное для различных типов ферм.

3.3.1. Линии влияния усилий в балочных фермах

Рассмотрим балочную ферму (рис. 3.10, а) и построим линии влияния S_{2-3} , S_{2-7} , S_{3-7} , S_{5-B} , S_{4-6} .

*Линия влияния усилия S*₂₋₃. Проводим сечение I через три стержня. Моментная точка "7". Рассеченная панель 8-7.

Груз справа от рассеченной панели (7-8).

$$\sum M_{7}^{\text{лев}} = 0: \qquad R_{A} 2d + S_{2-3}h_{1} = 0;$$

$$S_{2-3} = -R_{A} \frac{2d}{h_{1}}.$$

Груз слева от рассеченной панели (8-A).

$$\sum M_{7}^{\text{пр}} = 0: \qquad R_{B} 2d + S_{2-3}h_{1} = 0;$$

$$S_{2-3} = -R_{B} \frac{2d}{h_{1}}.$$

Полученные формулы усилий в стержне 2-3 при положении груза F = 1 слева и справа от рассеченной панели показывают, что искомая линия влияния выражается через линии влияния опорных реакций R_A и

 R_B с поправочным множителем $\left(-\frac{2d}{h_1}\right)$ (рис. 3.10, б).

Линия влияния усилия S_{3-7} . Для построения линии влияния применяем способ вырезания узлов. Рассматриваем равновесие узла (рис. 3.10, ж). Спроектировав все силы, действующие в узле "3" на вертикаль, найдем, что

$$\boldsymbol{S}_{3-7} = -2\boldsymbol{S}_{3-2}\sin\alpha.$$

Отсюда следует, что линию влияния усилия S_{3-7} можно получить, умножив каждую ординату л.в. S_{3-2} на $(-2\sin\alpha)$ (рис. 3.10, в).

Рис. 3.10. Схема балочной фермы (а) и линии влияния $S_{2-3}(6); S_{3-7}(B); S_{2-7}(\Gamma);$ $S_{4-6}(Д); S_{5-B}(e)$

Линия влияния усилия S₂₋₇. Используем сечение I (рис. 3.10, а). Моментная точка 0. Рассеченная панель 8-7.

Груз на участке 7-В (справа от рассеченной панели).

$$\sum M_{0}^{\text{neb}} = 0: \qquad R_{A} a - S_{2-7} h_{2} = 0;$$

$$S_{2-7} = R_{A} \frac{a}{h_{2}}.$$

Груз на участке 8-А (слева от рассеченной панели).

$$\sum M_{0}^{np} = 0: \qquad R_{B}(4d + a) + S_{2-7}h_{2} = 0;$$

$$S_{2-7} = -R_{B}\frac{4d + a}{h_{2}}.$$

Построенный график показан на рис. 3.10, г.

Линия влияния усилия S_{4-6} . Для построения линии влияния используем способ сечений. Проводим сечение II-II (рис. 3.10, а). Рассеченная панель при езде понизу 7-6. Моментная точка 0_1 .

Груз на участке 6-В.

$$\sum M_{0_{1}}^{\text{{\tiny ABB}}} = 0: \qquad R_{A}(4d+a) - S_{4-6}(d+a) = 0;$$

$$S_{4-6} = R_{A} \frac{(4d+a)}{d+a}.$$

Груз на участке 7-А.

$$\sum M_{0_{1}}^{np} = 0: \qquad R_{B}a + S_{4-6}(d+a) = 0;$$

$$S_{4-6} = -R_{B}\frac{a}{d+a}.$$

График усилия S_{11-6} показан на рис. 3.10, д.

Линия влияния усилия S_{5-B}. Вырезаем узел В (рис. 3.10, з). Рассматриваем два положения груза.

Груз F = 1 вне узла (участок 6-А): $S_{5-B} = -R_B$. Груз F = 1 в узле: $S_{5-B} = 0$. Построенная линия влияния показана на рис. 3.10, е.

Следует обратить внимание на следующее обстоятельство. При построении л.в. S_{3-7} рассматривалось одно положение груза – вне узла, так как по условию задачи «езда» осуществляется понизу.

3.3.2. Линии влияния в стержнях консольных ферм

Укажем на одно правило построения линий влияния в консольных фермах: при использовании способа сечений при составлении уравнений

равновесия следует рассматривать консольную часть фермы при любом расположении груза относительно рассеченной панели. Проиллюстрируем это на примере (рис. 3.11, а).

Рис. 3.11. Схема консольной фермы (а) и л.в. S_{3-4} (б), л.в. S_{3-9} (в), л.в. S_{1-12} (г)

Линия влияния усилия S₃₋₄. Для построения линии влияния воспользуемся сечением I-I. Моментная точка 9. Рассеченная панель 10-9.

Груз на участке 10-А.

$$\sum M_{9}^{\text{np}} = 0$$
: $S_{3-4} h_1 = 0$;

 $S_{3-4} = 0$.

Груз на участке 9-7. $\sum M_{9}^{\text{пр}} = 0$: $1 \cdot x_1 - S_{3-4} h_1 = 0$; $S_{3-4} = \frac{x_1}{h_1}$.

Теперь нетрудно построить график усилия (рис. 3.11, б).

Линия влияния усилия S_{3-9} . Моментная точка 0. Рассеченная панель 10-9.

Груз на участке 10-А (слева от рассеченной панели). $\sum M_{0}^{np} = 0$: $S_{3-0} h_2 = 0$:

$$J_{3-9} H_2 = 0$$

$$S_{3-9} = 0$$
.

Груз на участке 9-7.

$$\sum M_{0}^{\text{np}} = 0; \qquad 1 \cdot x_{2} - S_{3-9} h_{2} = 0;$$
$$S_{3-9} = \frac{x_{2}}{h_{2}}.$$

Подставляя в последнюю формулу $x_2 = a$ и $x_2 = (a+2d)$, построим линию влияния на участке 9-7. Соединяя ординату $\frac{a+2d}{h_2}$ с нулевой ординатой в точке "10", получим линию влияния S_{3-9} (рис. 3.11, в).

Линия влияния усилия S_{1-12} . Этот график построим с помощью метода определения усилий, который изложен в п. 3.2.1. Это метод вырезания узлов. Рассмотрим равновесие узла 12 (рис. 3.11, д). Груз F = 1 вне узла (точка A и участок 11-7):

$$S_{1-12} = 0$$
.

Груз *F* = 1 в узле:

 $S_{1-12} = 1$.

График изменения усилия S_{1-12} показан на рис. 3.11, г.

3.3.3. Линии влияния в стержнях консольно-балочных ферм

Рассмотрим консольно-балочную ферму (рис. 3.12, а) и проиллюстрируем особенности построения линий влияния, связанные с конструкцией фермы.

Рис. 3.12. Консольно-балочная ферма (а) и линии влияния усилий в стержнях 12-В (б); В-11 (в) ; В-7 (г); 5-6 (д)

Линия влияния усилия S_{12-B}. Моментная точка 7. Рассеченная панель 6-7.

Груз F = 1 справа от рассеченной панели (на участке 7-9).
$$\sum M_{7}^{\text{neb}} = 0: \qquad R_A \, 4d - S_{12-B} \, h_1 = 0; \qquad S_{12-B} = R_A \, \frac{4d}{h_1}.$$

Груз F = 1 слева от рассеченной панели.

 $\sum M_{7}^{\text{np}} = 0$: $S_{12-B}h_1 = 0$; $S_{12-B} = 0$.

Построенная линия влияния показана на рис. 3.12, б.

Линия влияния усилия S_{B-11} . Моментная точка 7. Рассеченная панель 7-8.

۸ <u>-</u> ۱

Груз *F* = 1 на участке (8-9).

$$\sum M_{7}^{\text{_{A}BB}} = 0; \qquad R_A \, 4d - S_{B-11} \, h_2 = 0; \qquad S_{B-11} = \frac{4d}{h_2} R_A.$$

Груз *F* = 1 на участке (7-1).

 $\sum M_{7}^{\text{np}} = 0$: $S_{B-11}h_2 = 0$; $S_{B-11} = 0$.

Линия влияния усилия S_{B-11} показана на рис. 3.12, в.

Линия влияния усилия S_{B-7} . Для построения этой линии влияния применим способ вырезания узлов (см. п. 3.2.1). Вырезаем узел В (рис. 3.12, е).

Рассмотрим равновесие этого узла.

$$\sum F_y = 0$$
; $R_B + S_{B-7} + S_{B-11} \cos \alpha = 0$;

$$S_{B-7} = -R_B - S_{B-11} \cos \alpha$$

Искомая линия влияния, как видно из полученного выражения, равна алгебраической сумме линии влияния усилий $S_{B-11}\cos\alpha$ (рис. 3.12, в) и линии влияния R_B .

Линия влияния S_{B-7} показана на рис. 3.12, г.

Линия влияния усилия S₅₋₆. Моментная точка 12, рассеченная панель 5-6.

Груз на участке 6-9.

$$\sum M_{12}^{\text{neb}} = 0; \qquad R_A \, 3d + S_{5-6} \, h_1 = 0; \, S_{5-6} = -R_A \, \frac{3d}{h_1}.$$

Груз на участке 6-1.

$$\sum M_{12}^{np} = 0$$
: $R_B d + S_{5-6} h_1 = 0$; $S_{5-6} = -R_B \frac{d}{h_1}$

Линия влияния усилия S₅₋₆ изображена на рис. 3.12, д.

3.3.4. Линии влияния в стержнях шпренгельных ферм

Методика и порядок построения линий влияния усилий в шпренгельных фермах практически такие же, как и для ферм с простой решеткой. Однако в случае затруднений получения простых уравнений следует придерживаться следующих рекомендаций: заданную ферму необходимо представить в виде основной фермы и шпренгеля; линии влияния усилий в стержнях основной фермы строятся, рассматривая только основную ферму; линии влияния усилий в стержнях шпренгеля получаются рассмотрением отдельно шпренгеля; линии влияния в стержнях, одновременно входящих и в основную ферму, и в шпренгель, получаются как сумма линий влияния в основном стержне и шпренгеле.

3.3.4.1. Линии влияния в стержнях ферм с одноярусными шпренгелями

Рассмотрим ферму с одноярусными шпренгелями (рис. 3.13, а). Построим линию влияния в стержне, который одновременно принадлежит и основной ферме, и шпренгелю. Это, например, стержень 12-7. Согласно определению

$$_{\Pi.B.}$$
 $S_{12-7} = _{\Pi.B.} S_{2-7} + _{\Pi.B.} S_{12-7}^{\text{ μ}}.$

Линия влияния S_{2-7} построена ранее (см. рис. 3.10, г, рис. 3.13, б). Основная ферма приведена там же (рис. 3.10, а). Для построения линии влияния S_{12-7} в шпренгеле рассмотрим его (рис. 3.13, в). Как было отмечено ранее, шпренгель работает на местную нагрузку. Поэтому, если груз F = 1 находится в узле 8 и левее его, а также в узле 7 и правее, то все элементы шпренгеля нулевые (т. е. усилия в этих элементах равны нулю). Отсюда следует, что точки 8 и 7 – нулевые ординаты линии влияния S_{7-12} . Остается теперь установить груз F = 1 в узел "11" и найти усилие S_{7-12} . Для этого придется вырезать узел "7" (рис. 3.13, г) и из уравнения равновесия найти S_{7-12} :

$$\frac{1}{2} + S_{7-12}^{m} \sin \alpha = 0, \quad S_{7-12}^{m} = \frac{1}{2 \sin \alpha}.$$

Теперь необходимо сложить оба графика. В результате получим искомую линию влияния (рис. 3.13, д).

Рис. 3.13. Ферма с одноярусными шпренгелями (а) и линии влияния л.в. S_{2-7} (б), л.в. S_{7-12} (д)

3.3.4.2. Линии влияния усилий в стойках ферм с двухъярусными шпренгелями

Построение линий влияния усилий основных стойках, В шпренгелями, находящихся между двухъярусными имеют такие особенности: сначала строят линии влияния в основной ферме при езде груза поверху и понизу, затем устанавливают груз в узлах грузового пояса, и при каждом положении груза анализируют работу двухъярусного шпренгеля. При положении груза в основных узлах шпренгели не работают, и тогда справедливы ординаты линии влияния, построенной при езде груза по грузовому поясу. При положении груза в дополнительном узле двухъярусный шпренгель передает нагрузку на противоположный пояс, и тогда справедливы ординаты линии влияния, построенной при движении груза по противоположному поясу.

Рассмотрим ферму с двухъярусными шпренгелями (рис. 3.14, а). Основная ферма без шпренгелей показана на рис. 3.10, а.

Линия влияния усилия S_{2-8} . Проводим сечение I-I (рис. 3.14, а). Рассеченные панели: при езде понизу 8-7; при езде поверху 1-2; моментная точка О.

Езда понизу. Груз на участке 7-В (справа от рассеченной панели).

$$\sum M_{0}^{\text{neb}} = 0: \qquad R_{A} a + S_{2-8}(a+d) = 0; \qquad S_{2-8} = -R_{A} \frac{a}{(a+d)}$$

Груз на участке 8-А (слева от рассеченной панели).

$$\sum M_{0}^{np} = 0 : R_{B} (4d + a) - S_{2-8} (a + d) = 0; S_{2-8} = R_{B} \frac{(4d + a)}{(d + a)}$$

Линия влияния показана на рис. 3.14, б.

Езда поверху. Рассеченная панель 1-2. Груз справа от рассеченной панели (участок 2-5):

$$S_{2-8} = -R_A \frac{a}{(a+d)}.$$

Груз слева от рассеченной панели (в точке 1):

$$S_{2-8} = R_B \frac{(4d+a)}{(d+a)}.$$

Линия влияния S_{2-8} при езде поверху показана на рис. 3.14, в.

Для построения линии влияния S_{2-8} в заданной ферме (со шпренгелями) поставим груз в каждый узел грузового пояса: если груз расположен в точках A, 8, 7, 6, B, шпренгели не работают, и, следовательно, справедливы ординаты при езде понизу; если груз расположен в узлах 9, 11, 13, 15, работает шпренгель и, следовательно, справедливы ординаты при езде поверху. График линии влияния S_{2-8} в заданной ферме показан на рис. 3.14, г.

Рис. 3.14. Ферма с двухъярусными шпренгелями (а) и линии влияния (б), (в), (г), (д), (е), (ж)

Линия влияния усилия S_{3-7} . Для построения графика применяем способ вырезания узлов. При езде понизу график этого усилия построен в п. 3.3.1, рис. 3.10, в (рис. 3.14, д).

При езде поверху полученное в п. 3.3.1 уравнение линии влияния

 $\boldsymbol{S}_{3-7} = -2\boldsymbol{S}_{3-2}\sin\alpha$

будет справедливо при расположении груза вне узлами (1-2 и 4-5). Если груз находится в узле "3", то

$$S_{3-7} = -2S_{3-2}\sin\alpha - 1$$
.

Соответствующий график при езде поверху показан на рис. 3.14, е. Окончательный график – на рис. 3.14, ж.

3.3.5. Пример расчета фермы на неподвижную нагрузку аналитически и по линиям влияния

3.3.5.1. Определение усилий в стержнях ферм аналитическим методом

Для заданной фермы (рис. 3.15) требуется определить усилия в стержнях 17-8, 3-15, 15-22, 21-22, 7-8, 24-9 от неподвижной нагрузки; построить линии влияния для этих же стержней; определить усилия по линиям влияния и сравнить с результатом аналитического расчета.

Рис. 3.15. Схема заданной фермы

Из заданной фермы выделим основную ферму (рис. 3.16, а) и шпренгели (рис. 3.16, б, в). В данном случае грузовым поясом является нижний, а опираются шпренгели на основные узлы верхнего пояса. Поэтому в основной ферме нагрузка, приложенная в узлах 4 и 8, передана на узлы 21, 22, 23, 24.

Рис. 3.16. Основная ферма (а) и нагруженные шпренгели (б) и (в)

Усилие в стержне 17-8. Стержень является элементом шпренгеля (рис. 3.16, в). В данном случае можно рассмотреть равновесие узла 8. Составляя уравнение проекций сил на вертикальную ось, получим

$$S_{8-17} = F = 50 \,\mathrm{KH}.$$

Усилие в стержне 3-15. Стержень 3-15 является элементом основной фермы 3-22. Поэтому рассмотрим основную ферму. Разрежем ее сечением I-I (см. рис. 3.16, а). Составим уравнения проекций на вертикальную ось для левой части фермы:

$$\sum Y_{\text{лев}} = 0$$
: $R_1 - \frac{F}{2} + S_{3-22} \cos \alpha = 0$,

откуда

$$S_{3-22} = \frac{-R_1 + F/2}{\cos \alpha} = \frac{-70 + 50/2}{0,707} = -63,65 \text{ kH}.$$

Усилие в стержне 15-22. Стержень принадлежит к основной ферме и шпренгелю. Усилие в нем определим способом сечений. Сечение II-II на заданной ферме показано на рис. 3.15.

Составим уравнение проекции:

$$\sum Y_{\text{лев}} = 0$$
: $R_1 - F + S_{15-22} \cos \alpha = 0$,

откуда

$$S_{15-22} = \frac{-R_1 + F}{\cos \alpha} = \frac{-70 + 50}{0,707} = -28,29 \,\mathrm{\kappa H}.$$

Усилие в этом стержне можно подсчитать и как сумму усилий, полученных отдельно в основной ферме (элемент 3-22, рис. 3.16, а) и отдельно в шпренгеле (элемент 15-22, рис. 3.16, а).

Усилие в основной ферме определено ранее (см. сечение I-I на основной ферме, рис. 3.16, а): $S_{3-22} = -63,65$ кН. Для определения усилия в шпренгеле рассмотрим равновесие узла 22 двухъярусного шпренгеля (рис. 3.16, б):

$$\sum Y = 0; \qquad \frac{F}{2} - S_{15-22}^{\text{m}} \cos \alpha = 0;$$

$$S_{15-22}^{\text{m}} = \frac{F}{2\cos\alpha} = \frac{50}{2 \cdot 0,707} = 35,36 \text{ kH};$$

$$S_{15-22} = S_{3-22} + S_{15-22}^{\text{m}} = -63,65 + 35,36 = -28,29 \text{ kH}.$$

Усилие в стержне 21-22. Стержень 21-22 входит и в основную ферму, и в шпренгель. Найдем усилие в этом стержне как элемента основной фермы (рис. 3.16, а, сечение 1-1):

$$\sum M_{3}^{\text{ABB}} = 0: R_{1}d + S_{21-22}H = 0,$$

отсюда

$$S_{21-22} = -\frac{R_1 d}{H} = -70 \,\mathrm{\kappa H}.$$

Теперь определим усилие в этом же стержне как элемента шпренгеля (см. рис. 3.16, б):

$$\sum X = 0: \qquad S_{21-22}^{\text{m}} + S_{15-22}^{\text{m}} \sin \alpha = 0;$$

$$S_{21-22}^{\text{m}} = -S_{15-22}^{\text{m}} \sin \alpha = -35,36 \cdot 0,707 = -25 \text{ kH}.$$

Суммарное усилие

$$S_{21-22} = S_{21-22}^{\phi} + S_{21-22}^{m} = -70 - 25 = -95 \text{ kH}.$$

Усилие в стержне 7-8. Этот стержень входит только в основную ферму. Усилие в нем можно определить, рассматривая либо заданную ферму (рис. 3.15), либо основную (стержень 7-9, рис. 3.16, а). Разрежем заданную ферму сечением III-III (см. рис. 3.15). Составим уравнение моментов относительно точки 23:

$$\sum M_{23}^{\text{прав}} = 0: \qquad F \cdot 3d - R_{11} \cdot 2d + F \frac{d}{2} + S_{7-8}H = 0;$$

$$S_{7-8} = \frac{-F \cdot 3d + R_{11} \cdot 2d - F\frac{d}{2}}{H} = \frac{-50 \cdot 12 + 130 \cdot 8 - 50 \cdot 2}{4} = 85^{\text{KH}}.$$

Усилие в стержне 24-9. Усилие в этом стержне определим, рассматривая основную ферму (сечение IV-IV на рис. 3.16, а), так как он принадлежит только основной ферме. Рассечь же заданную ферму, рассекая только три стержня, не представляется возможным (см. рис. 3.15).

Составим уравнение моментов относительно точки D пересечения поясов (рис. 3.15 и рис. 3.16, а):

$$\sum M \stackrel{\text{прав}}{_{\text{D}}} = 0: \qquad S_{24-9}(2d+a) + \frac{F}{2}(2d+a) + Fa - R_{11}(a+d) = 0;$$
$$S_{24-9} = \frac{R_{11}(a+d) - Fa - \frac{F}{2}(2d+a)}{(2d+a)} = \frac{130 \cdot 8 - 50 \cdot 4 - 25 \cdot 12}{12} = 45 \text{ KH}.$$

3.3.5.2. Определение усилий в стержнях ферм по линиям влияния

Линия влияния усилия S_{8-17} . Стержень 8-17 является элементом шпренгеля и работает только при движении груза в пределах панели 7-8-9. Рассмотрим равновесие узла 8 (рис. 3.17, а). При положении груза F = 1 в узле 8

$$\sum Y = 0$$
: $S_{8-17} - 1 = 0$, $S_{8-17} = 1$.

Груз F = 1 находится вне узла (участки: 9-13, 7-1):

$$\sum Y = 0$$
: $S_{8-17} = 0$.

Найденные ординаты линии влияния соединяем прямыми линиями (рис. 3.17, в).

Найдем усилие S_{8-17} по построенной линии влияния. В узле 8 действует сила F = 50 кН (см. рис. 3.15). Согласно формуле (2.11)

$$S_{8-17} = 50 \cdot 1 = 50 \,\mathrm{KH}$$

Линия влияния усилия S_{3-15} . Стержень 3-15 является элементом основной фермы. Составим уравнение проекций на вертикальную ось. Границами рассеченной панели являются узлы 3 и 5 (рис. 3.17, б). Груз находится слева от узла 3. Рассмотрим правую часть фермы:

$$\sum \boldsymbol{Y}^{\text{прав}} = 0$$
: $R_{11} - S_{3-22} \cos \alpha = 0$; $S_{3-22} = \frac{1}{\cos \alpha} R_{11} = 1,41 R_{11}$

Груз находится справа от узла 5. Рассмотрим левую часть фермы:

$$\sum Y^{\text{neb}} = 0$$
: $R_1 + S_{3-22} \cos \alpha = 0$, $S_{3-22} = -1.41R_1$

В этом случае ветви линии влияния параллельны (см. рис. 3.17, г).

Определим усилие $S_{3-22}(S_{3-15})$ по линии влияния от неподвижной нагрузки (рис. 3.15), кН:

$$S_{3-22} = 50(-0,283 - 0,849 - 0,424 + 0,283) = -63,65$$

что совпадает со значением, полученным аналитически.

Линия влияния усилия S_{15-22} . Эта линия влияния может быть построена как сумма линий влияния в основном стержне 3-22 и в шпренгеле 15-22 (рис. 3.17, д). Но в данном случае можно рассечь заданную ферму сечением II-II (рис. 3.17, а). Здесь границами рассеченной панели являются узлы 4 и 5. Записывая уравнение левой и правой ветвей линии влияния, убеждаемся, что они совпадают с уравнениями для линии влияния S_{3-22} . Различие будет только в том, что левая прямая будет справедлива до узла 4 (рис. 3.17, а).

Усилие S_{15-22} по линии влияния от неподвижной нагрузки, кH,

$$S_{15-22} = 50(0,424 - 0,849 - 0,424 + 0,283) = -28,30$$

совпадает с аналитическим решением ($S_{15-22} = -28,29 \, \text{кH}$).

Линия влияния усилия S_{21-22} . Для ее построения выберем метод сечений (сечение II-II на заданной ферме, рис. 3.17, а). Запишем уравнение моментов относительно точки 3. Так как стержень 21-22 относится и к основной ферме и к шпренгелю, границами рассеченной панели являются узлы 4 и 5.

Груз
$$F = 1$$
 находится слева от узла 4 (на участке 4-1):
 $\sum M_{3}^{\text{прав}} = R_{11} 4d + S_{21-22} H = 0, \qquad S_{21-22} = -4R_{11}.$
Груз $F = 1$ находится справа от узла 5 (на участке 5-13):
 $\sum M_{3}^{\text{лев}} = R_{1} d + S_{21-22} H = 0, \qquad S_{21-22} = -R_{1}.$

Ветви линии влияния пересекаются под моментной точкой 3 (рис. 3.17, е).

Усилие *S*₂₁₋₂₂ по линии влияния равно, кН,

$$S_{21-22} = 50(-1, 2-0, 6-0, 3+0, 2) = -95$$
,

что совпадает с аналитическим решением (см. п. 3.3.5.1).

Линия влияния усилия S_{7-8} . Проведем сечение III-III на заданной ферме (см. рис. 3.17, а). Запишем уравнение моментов относительно точки 23. Так как стержень относится к основной ферме, границами рассеченной панели будут узлы 7 и 9.

Груз находится слева от узла 7 (на участке 7-1):

$$\sum M_{23}^{\text{прав}} = R_{11} 2d - S_{7-8} H = 0, \ S_{7-8} = 2R_{11}.$$

Груз находится справа от узла 9 (на участке 9-13):

$$\sum M_{23}^{\text{neB}} = R_1 3 d - S_{7-8} H = 0, \quad N_{7-8} = 3R_1.$$

Вид линии влияния S_{7-8} показан на рис. 3.17, ж.

Усилие S_{7-8} по линии влияния равно, кН,

$$N_{7-8} = 50(0,6+0,8+0,9-0,6) = 85$$
,

что совпадает с аналитическим решением (п. 3.3.5.1).

Линия влияния усилия S_{9-24} (рис. 3.17, з). Сначала построим ее в основной ферме при езде груза поверху и понизу. Для этого проведем сечение IV-IV (см. рис. 3.17, б) и запишем уравнения моментов относительно точки D. Уравнения будут одинаковыми и при езде поверху, и при езде понизу. Но при езде поверху левая ветвь справедлива до узла 23, правая – до узла 24. При езде понизу – левая до узла 9, правая – до узла 11.

Груз находится слева от рассеченной панели:

 $\sum M D^{\text{прав}}_{D} = R_{11}(a+d) - S_{9-24}(2d+a) = 0,$

отсюда $S_{9-24} = 0,667R_{11}$.

Груз находится справа от рассеченной панели:

$$\sum M_{D}^{\text{neb}} = R_{1}(6d + a) + S_{9-24}(2d + a) = 0,$$

отсюда $S_{9-24} = -2,333R_1$.

Ветви линии влияния проведены пунктирными линиями. Они пересекаются над точкой D. Теперь установим груз в узлах, смежных со стойкой 9-24, панелей заданной фермы. Если груз находится в основных узлах, т. е. 7, 9, 11, шпренгели не работают. Тогда справедливы ординаты линии влияния, построенной при езде понизу. При положении груза в дополнительных узлах – 8, 10 – работают шпренгели и нагружают узлы верхнего пояса. В этом случае будут справедливы ординаты линии влияния, построенные при езде поверху.

Усилие S_{9-24} по линии влияния, кH, $S_{9-24} = 50(0.2 + 0.267 - 0.0335 + 0.467) = 45.02$.

Аналитическое решение, полученное в п. 3.3.5.1, равно

$$S_{9-24} = 45 \,\text{KH}.$$

РАЗДЕЛ 4

РАСПОРНЫЕ СИСТЕМЫ

В отличие от систем балочного типа, в распорных системах при вертикальной нагрузке возникают горизонтальные опорные реакции, которые называются распором. К этим системам относятся трехшарнирные арки и рамы, арочные фермы, комбинированные системы, в которых диски балок или ферм удерживаются цепью (тросом).

4.1. Расчет трехшарнирной арки на неподвижную нагрузку

Трехшарнирная арка представляет собой статически определимую систему. Она состоит из двух полуарок АС и ВС (рис. 4.1), шарнирно связанных с опорами А, В и между собой. Опорные шарниры называются пятовыми, а средний – ключевым. Разновидностью трехшарнирной арки является трехшарнирная арка с затяжкой (рис. 4.2). Системы, включающие в себя в качестве составной части трехшарнирную арку, представлены на рис. 4.3, 4.4, 4.5.

Рис. 4.1. Расчетная схема трехшарнирной арки

Для аналитического решения задачи ограничимся случаем вертикальной нагрузки. Для определения вертикальных опорных реакций *R_A* и *R_B* составим уравнение равновесия вида

$$\sum \boldsymbol{M}_{\boldsymbol{A}} = 0 \quad \boldsymbol{\mathbf{M}} \quad \sum \boldsymbol{M}_{\boldsymbol{B}} = 0 \, .$$

В результате получим

$$R_{A} = R_{A}^{0} = \frac{1}{\ell} \sum_{i=1}^{n} F_{i} b_{i}, \quad R_{B} = R_{B}^{0} = \frac{1}{\ell} \sum_{i=1}^{n} F_{i} a_{i}. \quad (4.1)$$

В этих формулах: ℓ – пролет арки; F_i – сосредоточенная сила, приложенная в произвольном сечении арки; a_i, b_i – соответственно расстояние от сосредоточенных сил до левой A и правой B опор арки; i = 1, 2, ..., n – число сосредоточенных сил. Распределенная нагрузка, если такая имеется, приводится к равнодействующей: $F_i = qG_i$, где C_i – протяженность распределенной нагрузки интенсивностью q. Формулы (4.1) показывают, что реакции R_A и R_B ничем не отличаются от тех вертикальных реакций, которые получились бы от заданной нагрузки, если бы трехшарнирная система была заменена простой балкой, опертой в точках A и B при отсутствии среднего шарнира (рис. 4.1, б). Усилия, полученные в этой балке, в дальнейшем будем называть балочными.

Из уравнения равновесия $\sum M_C^{\text{пев}} = 0$ (или $\sum M_C^{\text{прав}} = 0$) найдем горизонтальные опорные реакции H. При вертикальной нагрузке горизонтальные опорные реакции на левой A и правой B опорах равны между собой и направлены в противоположные стороны

$$H_A = H_B = H = \frac{M_C^0}{f},$$
 (4.2)

где M_{C}^{0} – изгибающий момент от заданных сил F_{i} в сечении C простой балки – балочный изгибающий момент.

В произвольном сечении *X* арки изгибающий момент, поперечная и продольная силы соответственно равны:

$$M_{x} = M_{x}^{0} - Hy_{x}; \qquad (4.3)$$

$$Q_{\chi} = Q_{\chi}^{0} \cos \varphi_{\chi} - H \sin \varphi_{\chi}; \qquad (4.4)$$

$$N_{\chi} = -\left(Q_{\chi}^{0}\sin\varphi_{\chi} + H\cos\varphi_{\chi}\right). \tag{4.5}$$

Анализ формул (4.3) – (4.5) показывает, что изгибающий момент и поперечная сила в арке меньше, чем в балке с таким же пролетом и нагрузкой (рис. 4.1, б). Причиной этого является распор H. Уменьшение изгибающих моментов и поперечных сил достигается ценой появления нового усилия N (4.5), отсутствующего в балке.

Напомним, что поперечная сила (4.4) в сечении криволинейного бруса равна проекции всех сил, расположенных по одну сторону от

84

сечения, на ось V (рис. 4.1, а), а продольная сила (4.5) – проекция всех сил, расположенных по одну сторону от сечения, на ось U (рис. 4.1, а).

В формулах (4.3) – (4.5) обозначено: M_x^0 , Q_x^0 – балочные (рис. 4.1, б) изгибающий момент и поперечная сила в сечении X; φ_x – угол между касательной, проведенной к оси арки в сечении X (ось U на рис. 4.1, а), и горизонталью;

$$\sin \varphi_{\mathbf{x}} = \frac{\operatorname{tg} \varphi_{\mathbf{x}}}{\sqrt{1 + \operatorname{tg}^2 \varphi_{\mathbf{x}}}} \quad ; \tag{4.6}$$

$$\cos\varphi_{x} = \frac{1}{\sqrt{1 + \mathrm{tg}^{2}\varphi_{x}}}; \qquad (4.7)$$

 $tg \phi_x = \frac{dy}{dx}$ – производная функции **У**, описывающей ось арки; например, если ось арки очерчена по квадратной параболе

$$\mathbf{y}=\frac{4\mathbf{f}}{\ell^2}(\ell-\mathbf{x})\mathbf{x},$$

то

$$\frac{dy}{dx} = \operatorname{tg} \varphi_{x} = \frac{4f}{\ell^{2}} (\ell - 2x);$$

если уравнение оси арки представляет собой окружность

$$y=\sqrt{(2R-x)x},$$

то

$$\frac{dy}{dx} = \operatorname{tg} \varphi_{x} = \frac{R - x}{\sqrt{2R - x} x}.$$

4.2. Особенности расчета трехшарнирной арки с затяжкой

В трехшарнирной арке с затяжкой (рис. 4.2, а), т. е. с дополнительным стержнем, стягивающим обе половины арки, распор возникает и погашается внутри самого сооружения, не передаваясь на опоры. Такая конструкция сочетает легкость опор простой балки с эффективностью трехшарнирной арки (под эффективностью понимается отмеченный ранее факт уменьшения изгибающих моментов и поперечных сил в арке по сравнению с балкой).

Рис. 4.2. Расчетная схема трехшарнирной арки с затяжкой

Усилие в затяжке получим, взяв сумму моментов левых или правых сил относительно шарнира C. Для этого случая на рис. 4.2, а показано сечение I-I, проведенное через шарнир C и затяжку:

$$N_3 = \frac{M_C^0}{(f-d)},$$
 (4.8)

где d – расстояние от линии, соединяющей опоры A и B, до затяжки; M_x^0 , Q_x^0 , N_x^0 – балочные усилия (рис. 4.2, б). Изгибающий момент, поперечная и продольная силы в сечениях определяются по нижеприведенным и полученным из них формулам в зависимости от расположения сечения.

Сечение на участках AD и BE (см. рис. 4.2, а)

$$M_{\chi} = M_{\chi}^{0}; \qquad (4.9)$$

$$Q_{\chi} = Q_{\chi}^{0} \cos \varphi_{\chi}; \qquad (4.10)$$

$$N_{\chi} = -Q_{\chi}^{0} \sin \varphi_{\chi}. \tag{4.11}$$

Сечение на участке *DCE* (рис. 4.2, а)

$$M_{x} = M_{x}^{0} - N_{3}(y_{x} - d); \qquad (4.12)$$

$$Q_{\chi} = Q_{\chi}^{0} \cos \varphi_{\chi} - N_{3} \sin \varphi_{\chi}; \qquad (4.13)$$

$$N_{x} = -\left(Q_{x}^{0}\sin\varphi_{x} + N_{3}\cos\varphi_{x}\right). \qquad (4.14)$$

4.3. Расчет систем, включающих трехшарнирную арку

86

Рассмотрим системы, включающие в себя в качестве составной части трехшарнирные арки. На рис. 4.3, а показана система, составленная из вертикальных стоек и арочной части, жестко с ними связанной.

Рис. 4.3. Расчетная схема трехшарнирной системы

Вертикальные опорные реакции в таком сооружении определяются по формулам (4.1), т.е. как в простой балке (рис. 4.3, б). Горизонтальные опорные реакции находятся следующим образом:

$$H = \frac{M_C^0}{f+h},\tag{4.15}$$

где *h* – высота стойки.

Формула (4.15) получена из уравнений равновесия: $\sum M_C^{\text{пев}} = 0$ или $\sum M_C^{\text{пр}} = 0$. Изгибающий момент, поперечная и продольная силы в произвольном сечении арочной части определяются по зависимостям, аналогичным (4.3) – (4.5), т. е.

$$M_{x} = M_{x}^{0} - H(y_{x} + h);$$

$$Q_{x} = Q_{x}^{0} \cos \varphi_{x} - H \sin \varphi_{x};$$
(4.16)

$$N_{x} = - \left(Q_{x}^{0} \sin \varphi_{x} + H \cos \varphi_{x} \right).$$

Определим внутренние силы в вертикальных элементах.

На участке AD ($x_1 = 0$, $0 \le y_1 \le h$) (местная система координат в точке A)

$$M_y = -Hy_1; \tag{4.17}$$

$$Q_{\rm V} = -H; \qquad (4.18)$$

$$N_{\gamma} = -R_{A} \,. \tag{4.19}$$

На участке *BE*
$$(x_1 = \ell, 0 \le y_1 \le h)$$

 $M_y = Hy_1; \quad Q_y = H; \quad N_y = -R_B.$ (4.20)

Правила знаков для изгибающих моментов, поперечных и продольных сил при рассмотрении вертикальных элементов системы приняты следующими: если суммарный момент всех сил, расположенных слева от сечения, направлен по часовой стрелке, то он считается положительным (для правых сил положительный момент направлен против часовой стрелки); поперечная сила считается положительной, если слева от сечения она направлена вверх, а справа – вниз; продольная сила положительна, если она направлена от сечения. Понятия "низ", "верх", "слева", "справа" зависят от наблюдателя. Поэтому условимся "смотреть" на вертикальные элементы справа налево. Теперь станут понятными знаки M_y , Q_y , N_y в формулах (4.17) – (4.20).

В заключение этого подраздела рассмотрим систему, показанную на рис. 4.4, а.

Рис. 4.4. Расчетная схема трехшарнирной системы

Система состоит из трехшарнирной арки ACB, опирающейся на консоли DA и EB. Схема взаимодействия элементов системы показана на рис. 4.5.

Рис. 4.5. Схема взаимодействия элементов трехшарнирной системы

Расчет этой трехшарнирной системы производится в следующей последовательности. Сначала рассматривается трехшарнирная арка *ABC* (рис. 4.5). Расчет этой части системы производится по формулам (4.1) - (4.5) заменой ℓ на ℓ_1 и f на f_1 . Ординаты точек A и B определяются из уравнения, описывающего ось арки при X = a.

На втором этапе расчета рассматриваются консольные части системы (рис. 4.6).

Рис. 4.6. Расчетные схемы консолей трехшарнирной системы

Изгибающие моменты, продольные и поперечные силы в сечениях консолей находятся по зависимостям (4.3) – (4.5). При этом балочные значения функций M_x^0 , Q_x^0 принимаются из расчета консольных балок (рис. 4.4, б), к которым, помимо R_A и R_B , может быть также приложена и другая нагрузка, если по условию задачи эти части трехшарнирной системы нагружены.

4.4. Расчет трехшарнирных рам на неподвижную нагрузку

Рассмотрим трехшарнирную раму (рис. 4.7). Ограничимся, как и ранее при расчете трехшарнирных арок, вертикальной нагрузкой.

Рис. 4.7. Расчетная схема трехшарнирной рамы с опорами, расположенными на разных уровнях

Определим вначале опорные реакции. Для этого составим систему двух уравнений:

$$\sum M_{C}^{\text{neb}} = 0: \quad R_{A}\ell_{1} - \sum_{i=1}^{n} F_{i} \left(\ell_{1} + c - a_{i}\right) - Hh_{1} = 0;$$

$$\sum M_{B} = 0: \quad R_{A}\ell_{-} - \sum_{i=1}^{m} F_{i} \left(\ell_{-} + c - a_{i}\right) - H(h_{1} - h_{2}) = 0.$$
(4.21)

Заменим первые два члена в этих уравнениях через $M_{C, \text{лев}}^{0}$ и M_{B}^{0} . В результате получим

$$M_{C,\text{neb}}^0 - Hh_1 = 0,$$

 $M_B^0 - H(h_1 - h_2) = 0.$
(4.22)

Решив систему (4.22), найдем

$$M_{C, \text{neb}}^{0} = M_{B}^{0} \frac{h_{1}}{(h_{1} - h_{2})}; \qquad (4.23)$$

$$H = \frac{M_{C, \text{neb}}^0}{h_1} = M_B^0 \frac{1}{(h_1 - h_2)}.$$
 (4.24)

Из уравнения (4.23) можно определить вертикальную опорную реакцию R_A , а из уравнения (4.24) – горизонтальную реакцию H – распор.

Аналогично, взяв сумму моментов правых сил относительно шарниров C и A, получим систему двух уравнений с неизвестными R_B и H. Решив эту систему, найдем

$$M_{C,\,\rm mpaB}^{\,0} = -M_{A}^{\,0} \frac{h_2}{(h_1 - h_2)}; \qquad (4.25)$$

$$H = \frac{M_{C, \text{прав}}^{0}}{h_{2}} = -M_{A}^{0} \frac{1}{(h_{1} - h_{2})}.$$
(4.26)

Уравнение (4.25) служит для определения опорной реакции R_B , а уравнение (4.26) – для проверки правильности найденного значения опорной реакции Н по формуле (4.24). Чтобы убедиться в том, что R_A правильно найдены вертикальные опорные реакции и R_B необходимо все силы, в том числе и опорные реакции, действующие на трехшарнирную раму, спроектировать на вертикальную ось Y и получить $\sum F_x = 0$. В рассматриваемой трехшарнирной системе равенство вертикальные опорные реакции не равны балочным вертикальным R_A^0 и R_B^0 . Это связано с тем, что опоры рамы A и B реакциям расположены на разных уровнях, и для нахождения реакций приходиться решать систему уравнений (4.22), в которую в качестве неизвестной входит и горизонтальная реакция *H*. Теперь, когда реакции найдены, перейдем к определению внутренних сил в сечениях рамы.

Участок $AE (x = 0, 0 \le y_1 \le h_1)$:

$$M_{y1} = -Hy_1; \quad Q_y = -H; \quad N_y = -R_A.$$

Участок $DE (y = h_1, 0 \ge x_2 \ge -c)$:

$$M_{x_{2}} = -\sum_{i=1}^{n} F_{i} (c + x_{2} - a_{i}); \quad Q_{x_{2}} = -\sum_{i=1}^{n} F_{i}; \quad N_{x} = 0; \quad a_{i} \leq (c + x_{2}).$$

Здесь n – число сосредоточенных сил, расположенных слева от сечения II-II; a_i – расстояние от точки D до сосредоточенной силы F_i .

Участок *ECL* $(y = h_1, \ell \ge x_3 \ge 0)$:

$$M_{x_{3}} = R_{A} \cdot x_{3} - \sum_{i=1}^{p} F_{i} (x_{3} + c - a_{i}) - Hh_{1};$$

$$Q_{x_{3}} = R_{a} - \sum_{i=1}^{p} F_{i}; \quad N_{x_{3}} = -H.$$

Здесь *Р* – число сосредоточенных сил, расположенных слева от сечения III-III.

Участок *LK* $(y = h_1, \ell \le x_4 \le (\ell + d))$:

$$M_{x} = -\sum_{i=1}^{r} F_{i} \left(\ell + d - x_{4} - b_{i} \right);$$
$$Q_{x} = \sum_{i=1}^{r} F_{i} ; N_{x} = 0; b_{i} \ge \left(\ell + d - x_{4} \right).$$

В этих формулах *Г* – число сосредоточенных сил, расположенных справа от сечения IV-IV (рис. 4.7).

Участок *BL* $(x = \ell, h_1 \ge y_5 \ge (h_1 - h_2))$:

$$M_{y5} = Hy_5; \qquad Q_y = H; \qquad N_y = -R_B.$$

Остановимся на частном случае конструкции трехшарнирной рамы, когда $h_1 = h_2 = h$ (рис. 4.8).

Рис. 4.8. Расчетная схема трехшарнирной рамы с опорами, расположенными на одном уровне

Здесь, поскольку опоры A и B расположены на одном уровне, опорные реакции R_A и R_B находятся по формулам, аналогичным (4.1), т. е. из расчета балки, показанной на рис. 4.8, б.

Для определения горизонтальной опорной реакции *H* достаточно первого уравнения типа (4.22):

$$H = \frac{M_c^0}{h}.$$
 (4.27)

Внутренние силовые факторы на участках AE, DE, ECL, LK, BL (рис. 4.8, а) определяются по формулам, аналогичным для рамы, показанной на рис. 4.7.

В заключение этого подраздела рассмотрим трехшарнирную раму с наклонными стойками (рис. 4.9, а).

Рис. 4.9. Расчетная схема трехшарнирной рамы с наклонными стойками

Для определения вертикальных опорных реакций R_A и R_B воспользуемся формулами (4.1), а распор H найдем по формуле (4.27). При этом балочный изгибающий момент M_C^0 в сечении C получим из расчета балки, показанной на рис. 4.9, б. Внутренние силы в сечениях рамы находим для каждого участка.

Участок $AE ((c-c_1) \ge x_1 \ge 0, h \le y_1 \ge 0)$: $M_{x_1} = R_A x_1 - H y_1; \quad Q_{x_1} = R_A \cos \varphi_A - H \sin \varphi_A;$ $N_{x_1} = -R \sin \varphi_A - H \cos \varphi_A.$ Участок *DE* $(y = h, (c - c_1) \ge x_2 \ge 0, -c_1 \le x_2 \le 0)$:

$$M_{x_2} = M_{x_2}^0; \quad Q_{x_2} = Q_{x_2}^0; \quad N_{x_2} = 0.$$

Участок ECL $(y = h, (c - c_1) \le x_3 \le (\ell + d_1 - d))$:

 $M_{x_3} = M_{x_3}^0 - Hh;$ $Q_{x_3} = Q_{x_3}^0;$ $N_{x_3} = -H.$

Участок *LK* $(y = h, (\ell + d_1) \ge x_4 \ge (\ell + d_1 - d))$:

$$M_{x_4} = M_{x_4}^0; \qquad Q_{x_4} = Q_{x_4}^0; \qquad N_{x_4} = 0.$$

Участок BL $(h \ge y_5 \ge 0, \ \ell \ge x_5 \ge (\ell + d_1 - d)):$
 $M_{x_5} = R_B x_5 - H y_5; \quad Q_{x_5} = -R_B \cos\varphi_B + H \sin\varphi_B;$
 $N_{x_5} = -(R_B \sin\varphi_B + H \cos\varphi_B).$

4.5. Расчет трехшарнирной арки на подвижную нагрузку

Как известно (см. п. 2.2), в задачах расчета по недеформируемой схеме статически определимых систем на подвижную нагрузку общим и универсальным является метод линий влияния. При построении линий влияния в трехшарнирной арке используем ранее полученные формулы (4.2) – (4.5). Тогда линия влияния распора H равна линии влияния балочного изгибающего момента в сечении C, все ординаты которой уменьшены на постоянное число $\left|\frac{1}{f}\right|$, т. е.

л.в.
$$H = \pi.B. M_c^0 \left(\frac{1}{f}\right).$$
 (4.28)

Аналогично, линии влияния изгибающего момента в сечении представляют собой сумму двух линий влияния: линии влияния балочного изгибающего момента в сечении X и линии влияния распора H, все ординаты которой умножены на постоянное число $(-y_x)$:

л.в.
$$M_x = \pi.B. M_x^0 + \ddot{e}.\hat{a}.H(-y_x).$$
 (4.29)

Для построения линии влияния Q_x и N_x используем следующие равенства:

л.в.
$$Q_{\mathbf{x}} = \pi.\mathbf{B}. \ Q_{\mathbf{x}}^{0} \cos \varphi_{\mathbf{x}} + \ddot{\mathbf{e}}. \hat{\mathbf{a}}. \mathcal{H}(-\sin \varphi_{\mathbf{x}});$$
 (4.30)

$$\Pi.\mathbf{B}. \ \mathbf{N}_{\mathbf{X}} = \Pi.\mathbf{B}. \ \mathbf{Q}_{\mathbf{X}}^{0}(-\sin\varphi_{\mathbf{X}}) + \ddot{\mathbf{e}}.\mathbf{\hat{a}} \mathcal{H}(-\cos\varphi_{\mathbf{X}}).$$
(4.31)

На рис. 4.10 показаны линии влияния H, M_x , Q_x , N_x и процесс их построения.

Рис. 4.10. Линии влияния в сечении трехшарнирной арки

Величина уступа (скачка) на л.в. Q_x в сечении X равна $\cos \varphi_x$, а на л.в. $N_x - \sin \varphi_x$. Обратим внимание на особенности построения линий влияния в сечениях трехшарнирной арки с затяжкой (п. 4.2, рис. 4.2) и систем, включающих трехшарнирную арку (п. 4.3, рис. 4.3, 4.4). Линия влияния

усилия в затяжке строится по формуле (4.8). Если сечение проведено на участках AD и BE, то линии влияния M_x , Q_x , N_x строятся в соответствии с формулами (4.9) – (4.11). Если же сечение принадлежит участку *DCE*, то основой для построения линий влияния являются формулы (4.12) – (4.14). В трехшарнирной системе, показанной на рис. 4.3, линия влияния распора строится по уравнению (4.15). Для сечения, расположенного на участке DCE, применяются формулы (4.3) – (4.5) для фермы на рис. 4.2 и формулы (4.16) для фермы на рис. 4.3. Для сечений на участках AD и BE – соответственно (4.17) – (4.19) и (4.20). Для системы, изображенной на рис. 4.4, линия влияния в сечении, расположенном на участке АСВ, строится, как и в обычной трехшарнирной арке с пролетом ℓ_1 и стрелой подъема f_1 (см. п. 4.2 и рис. 4.10). Если же сечение проведено в пределах консольной части, то сначала строится линия влияния для консольной части, а затем распространяется на часть АСВ системы. Например, построим линии влияния M_x , Q_x , N_x в сечении X, проведенном на участке DA (рис. 4.11).

Рис. 4.11. Линии влияния в сечении консольной части трехшарнирной системы

В соответствии с формулами (4.3) – (4.5) при
$$H = 0$$
 имеем
л.в. $M_x = \pi$.в. M_x^0 ;
л.в. $Q_x = \pi$.в. $Q_x^0 \cos \varphi_x$;
л.в. $N_x = \pi$.в. $Q_x^0(-\sin \varphi_x)$.
(4.32)

Теперь осталось построить балочные линии влияния M_x^0 и Q_x^0 (рис. 4.11, б), скорректировать их в соответствии с выражениями (4.32) и распространить на участок *ADB* (рис. 4.11, а).

4.6. Расчет трехшарнирных рам на подвижную нагрузку

Построим сначала линии влияния в трехшарнирной раме, опоры которой расположены на разных уровнях (рис. 4.7, 4.12, а). Начнем с линии влияния опорной реакции R_A .

Рис. 4.12. Линии влияния опорных реакций в трехшарнирной раме

Предположим, что единичный груз перемещается по участку DC $0 \le x \le (\ell_1 + c)$. Воспользуемся полученной ранее формулой (4.23). Имеем

$$R_{A}\ell_{1} - (\ell_{1} + c - x) = [R_{A}\ell + (\ell + c - x)]\frac{h_{1}}{h_{1} - h_{2}}$$

Отсюда найдем

$$R_{A} = \frac{-(\ell + c - x)h_{1} + (\ell_{1} + c - x)(h_{1} - h_{2})}{\ell_{1}(h_{1} - h_{2}) - \ell h_{1}}.$$
(4.33)

Таким образом, мы получили уравнение линии влияния R_A на участке DC.

Предположим теперь, что груз расположен на участке *CK* $(\ell_1 + c) \le x \le (\ell + c + d)$. Используя ту же формулу (4.33), найдем

$$R_{A} = -\frac{(\ell + c - x)h_{1}}{\ell_{1}(h_{1} - h_{2}) - \ell h_{1}}.$$
(4.34)

Аналогично, воспользовавшись (4.25), получим уравнение для линии влияния *R*_B.

Груз
$$F = 1$$
 на участке KC $(\ell_1 + c) \le x \le (\ell + c + d)$:

$$R_B = \frac{(x - c)h_2 + (x - c - \ell_1)(h_1 - h_2)}{\ell_2(h_1 - h_2) + \ell h_2}.$$
(4.35)

Груз F = 1 на участке $CD \quad 0 \le x \le (\ell_1 + c)$:

$$R_B = \frac{(x-c)h_2}{\ell_2(h_1 - h_2) + \ell h_2}.$$
(4.36)

Линии влияния R_A и R_B показаны на рис. 4.12, б, в.

Построим линию влияния распора H. Груз на участке CK. Составляем уравнение равновесия $\sum M_C^{\text{лев}} = 0$:

$$R_{A}\ell_{1}-Hh_{1}=0$$

откуда

л.в.
$$H = \pi.B. R_A \frac{\ell_1}{h_1}$$
. (4.37)

Следовательно, линия влияния распора H на участке CK будет такой же, как и линия влияния R_A на этом участке, все ординаты которой умножены на постоянное число $\frac{\ell_1}{h_1}$.

Груз на участке *CD*. Теперь составляем уравнение $\sum M_C^{\text{прав}} = 0$: $R_B \ell_2 - H h_2 = 0$,

откуда

л.в.
$$\boldsymbol{H} = \pi.B. \ \boldsymbol{R}_B \frac{\ell_2}{h_2}.$$
 (4.38)

98

Рассуждая так же, как и в предыдущем случае, видим, что линия влияния распора H на участке CD будет такой же, как линия влияния R_B , все ординаты которой умножены на $\frac{\ell_2}{h_2}$.

Линия влияния H показана на рис. 4.12, г. Линии влияния изгибающего момента, продольной и поперечной силы на участке *ECL* строятся через линии влияния R_A , R_B и H. Для построения линий влияния в сечениях участков *DE*, *LK*, *AE*, *BL* следует воспользоваться полученными ранее формулами (п. 4.4).

Если опоры трехшарнирной рамы расположены на одном уровне, то построение линий влияния усилий в ее сечениях значительно упрощается. Покажем это на примере трехшарнирной рамы, изображенной на рис. 4.13, а.

Линия влияния распора строится в соответствии с формулой (4.27), рис. 4.13,6:

л.в.
$$H = \pi.B. M_c^0 \frac{1}{h}$$
.

Линии влияния M_x , Q_x , N_x на участке *ECL* описываются следующими уравнениями (рис. 4.13, в – ж):

л.в.
$$M_x = \pi.B. M_x^0 - \ddot{e}.\hat{a}.H(h);$$

л.в. $Q_x = \pi.B. Q_x^0;$
л.в. $N_x = \pi.B. H(-1).$

Линии влияния M_y , Q_y , N_y в сечении Y на участке AE строятся следующим образом:

л.в.
$$M_{y} = \pi.B. H(-y);$$

л.в. $Q_{y} = \pi.B. H(-1);$
л.в. $N_{y} = \pi.B. R_{A}(1).$

Указанные линии – на рис. 4.13, з, и, к.

Рис. 4.13. Линии влияния в сечениях трехшарнирной рамы с опорами на одном уровне

4.7. Расчет арочных ферм

Трехшарнирная арка, у которой обе полуарки AC и CB представляют собой фермы, называется трехшарнирной арочной фермой. Расчет трехшарнирных арочных ферм производится на основе описанных приемов расчета трехшарнирной арки со сплошной стенкой (см. п. 4.1). При этом используются также способы расчетов обычных ферм на подвижную и неподвижную нагрузки.

4.7.1. Расчет арочных ферм на неподвижную нагрузку

Вертикальные опорные реакции R_A и R_B в арочной ферме равны балочным опорным реакциям R_A^0 и R_B^0 (рис. 4.14, а, б).

Горизонтальные опорные реакции определяются по формуле (4.2), полученной при расчете трехшарнирных арок, с заменой в ней f на h или по формуле (4.27) для трехшарнирных рам:

$$H=\frac{M_C^0}{h}.$$

Покажем теперь, как определить усилия в стержнях арочной фермы, например, 7-8, 16-8, 16-15.

Усилие в стержне 7-8. Проводим сечение I-I (рис. 4.14, а). Определяем моментную точку, т. е. точку, где пересекаются стержни 16-8 и 16-15. Это точка 16. Длину перпендикуляра, опущенного из точки 16 на направление стержня 7-8, обозначим через h_1 . Составим уравнение равновесия $\sum M_{16}^{\text{прав}} = 0$. В результате получаем

$$R_B \cdot 3d - Hf_{16} + S_{7-8}h_1 - F_1d = 0.$$

Отсюда определяем неизвестное усилие S_{7-8} .

Усилие в стержне 16-8. Моментная точка С. Длина перпендикуляра, опущенного из точки С на направление стержня 16-8, равна h_2 (рис. 4.14, а).

Уравнение равновесия

$$\sum M_C^{\text{neb}} = 0$$
:

$$R_A \cdot 4d - Hh - F_1 3d - F_2 d - S_{16-8}h_2 + F_3 d = 0$$
.

Отсюда находим S_{16-8} .

Усилие в стержне 16-15. Моментная точка 8. Расстояние от стержня до моментной точки $8 - h_3$.

Уравнение равновесия $\sum M_8^{\text{пр}} = 0$:

$$\boldsymbol{R}_{\boldsymbol{B}} \cdot 2\boldsymbol{d} - \boldsymbol{H}\boldsymbol{h} - \boldsymbol{S}_{16-15} \cdot \boldsymbol{h}_3 = 0$$

Рис. 4.14. Расчетная схема арочной фермы и линии влияния усилий

Из этого уравнения и определяется усилие S_{16-15} . Как и ранее, обратим внимание на то, что в полученных формулах распор H

значительно уменьшает усилия в стержнях арочной фермы по сравнению с усилиями в балочных фермах. Это позволяет получить экономию материала и увеличить тот предельный пролет, который может быть перекрыт балочной фермой.

4.7.2. Расчет арочных ферм на подвижную нагрузку

Начнем с построения линии влияния распора *H*. Воспользуемся формулой (4.27):

л.в.
$$H = \pi.B. M_c^0 \frac{1}{h}.$$

Линия влияния показана на рис. 4.14, в.

Линия влияния усилия в стержне 7-8. Воспользуемся сечением I-I (рис. 4.14, а). Найдем моментную точку. Это точка 16. Рассеченная панель 7-8. Рассмотрим два положения единичного груза.

Груз на участке 8-10.

Возьмем сумму моментов левых сил относительно точки 16:

$$R_A \cdot 5d - Hf_{16} + S_{7-8}h = 0$$
.

Груз на участке 7-3.

Запишем уравнение моментов правых сил относительно точки 16. Имеем

$$R_B \cdot 3d - Hf_{16} + S_{7-8}h_1 = 0$$
.

Заменим в полученных уравнениях

$$R_A \cdot 5d = R_B \cdot 3d = M_{16}^0$$
.

Тогда уравнение искомой линии влияния принимает вид

л.в.
$$S_{7-8} = - \pi.B. M_{16}^0 \left(\frac{1}{h_1}\right) + \pi.B. H \frac{f_{16}}{h_1}.$$

Построение этой линии влияния показано на рис. 4.14, г, д.

Линия влияния в стержне 16-8. Для нахождения усилия в стержне 16-8 от единичной нагрузки воспользуемся также сечением I-I (рис. 4.14, а). Моментной точкой в этом случае будет точка *С*. При нахождении груза слева и справа от рассеченной панели 7-8 уравнения линии влияния S_{16-8} будут иметь такой вид:

– груз на участке (8-10) (справа от расчетной панели):

$$S_{16-8} = R_A \frac{4d}{h_2} - H \frac{3d}{h_2}$$

– груз на участке (7-3) (слева от расчетной панели):

$$S_{16-8} = R_B \frac{4d}{h_2} - H \frac{3d}{h_2}.$$

Заменим в полученных уравнениях

 $R_A \cdot 4d = R_B \cdot 4d = M_c^0,$

103

тогда (см. рис. 4.14, е, ж, з)

л.в.
$$S_{16-8} = _{Л.B.} M_c^0 \left(\frac{1}{h_2}\right) - _{Л.B.} H \frac{3d}{h_2}$$

4.8. Расчет комбинированных систем

Рассмотрим комбинированную систему, состоящую из шарнирной цепи и двух балочных ферм, соединенных шарниром (рис. 4.15, а). Система, показанная на этом рисунке, геометрически неизменяема и статически определима. Действительно, если бы проезжая часть (фермы AC и CB) не была подкреплена цепью, то она обладала бы одной степенью свободы. Но к проезжей части присоединяется при помощи вертикальных элементов (подвесок) трос, прикрепленный к неподвижным опорам D и E. Таким образом, трос лишает фермы проезжей части отмеченной выше степени свободы, т. е. делает ферму геометрически неизменяемой. Так как подвески вертикальные, то усилия во всех элементах цепи (троса) имеют одну и ту же горизонтальную проекцию. Будем называть ее, как и в арочных системах, распором и обозначать буквой H.

На расчет, который будет изложен ниже, необходимо смотреть как на приближенный, так как удлинение троса учитываться не будет. Отметим, что для рассматриваемой здесь статически определимой висячей системы расчет по деформированной схеме (с учетом удлинения троса) не имеет существенного значения. Это объясняется следующим обстоятельством. Изгибающий момент, как будет показано далее, в произвольном сечении балки жесткости равен

$$M_{x} = M_{x}^{0} - Hf_{1} = M_{x}^{0} - M_{C}^{0} \frac{f_{1}}{f},$$

где f_1 – расстояние от горизонтали (ось X) до троса в рассматриваемом сечении (рис. 4.15, а); f – стрела провисания троса в сечении C.

Когда трос удлиняется, то f_1 и f одновременно увеличиваются, поэтому изгибающий момент изменяется мало. Деформация троса, вызванная нагрузкой, имеет особое значение для статически неопределимых висячих мостов, где удлинение троса оказывает значительное влияние на изгибающий момент в балке.

При расчете ограничимся, как и ранее, случаем вертикальной нагрузки.

Рис. 4.15. Расчетная схема комбинированной системы и линии влияния

4.8.1. Расчет комбинированных систем на неподвижную нагрузку

Найдем вертикальные опорные реакции. Для их определения составим уравнение в форме моментов всех сил, действующих на систему относительно шарниров *D* и *E*. В результате получим

$$R_{A}^{0} = R_{A}' + R_{A}'' = \frac{1}{\ell} \sum_{i=1}^{n} F_{i} b_{i} ,$$

$$R_{B}^{0} = R_{B}' + R_{B}'' = \frac{1}{\ell} \sum_{i=1}^{n} F_{i} a_{i} ,$$
(4.39)

где R_A^0 , R_B^0 – вертикальные реакции, которые возникли бы на опорах A и B, если бы вся рассматриваемая система была заменена балкой AB (рис. 4.15, б);

$$R''_{A} = H \operatorname{tg} \phi; \ R''_{B} = H \operatorname{tg} \phi;$$

$$R'_{A} = R^{0}_{A} - H \operatorname{tg} \phi; \qquad (4.40)$$

$$R'_{A} = R^{0}_{A} - H \operatorname{tg} \phi; \qquad R'_{B} = R^{0}_{B} - H \operatorname{tg} \phi.$$

Для определения горизонтальной составляющей усилия (распора) в тросе *H* воспользуемся уравнением

$$\sum M_{\text{лев}}^{c} = 0$$

(сечение I-I на рис. 4.15, а).

В результате получим формулу, аналогичную (4.2), т. е.

$$H = \frac{M_c^0}{f}, \qquad (4.41)$$

где f – стрела провисания троса (рис. 4.15, а); M_C^0 – балочный изгибающий момент в сечении C балки AB (рис. 4.15, б).

Найдем усилие в подвеске 20-2. Вырежем узел 20 и рассмотрим его равновесие (рис. 4.16).

Рис. 4.16. Схема усилий, действующих на узел 20

Спроектируем все силы, действующие на узел, на ось X и учтем, что усилия в элементах троса имеют одну и ту же горизонтальную проекцию H. Получим

$$S_{20-19}\cos\varphi_{20-19} = S_{20-21}\cos\varphi_{20-21} = H$$
.

106
Отсюда найдем

$$S_{20-19} = \frac{H}{\cos \varphi_{20-19}}, \ S_{20-21} = \frac{H}{\cos \varphi_{20-21}}.$$
 (4.42)

Теперь спроектируем все силы на вертикальную ось У:

$$S_{20-2} - S_{20-19} \sin \varphi_{20-19} + S_{20-21} \sin \varphi_{20-21} = 0$$
.

С учетом (4.42) найдем усилие в подвеске

$$S_{20-2} = H(tg\phi_{20-19} - tg\phi_{20-21}).$$

Эту формулу распространим на *n*-й узел:

$$S_n = H(\operatorname{tg}\alpha_n - \operatorname{tg}\alpha_{n+1}), \qquad (4.43)$$

где α_n , α_{n+1} – углы наклона троса соответственно слева и справа от подвески.

Теперь осталось найти усилие в стержнях проезжей части. Рассмотрим стержни 3-4, 3-15, 16-15 (рис. 4.15, а).

Усилие в стержне 3-4. Проведем сечение II-II (см. рис. 4.15, а). Усилие в тросе разложим на горизонтальную H и вертикальную составляющую $H tg\phi_k$. Точка k на тросе – это вертикальная проекция точки 15, т. е. моментной точки, в которой пересекаются стержни 3-15 и 16-15. Составим уравнение моментов всех сил, расположенных слева (справа) от сечения:

$$M_{15}^0 - Hy_k + S_{3-4}h = 0,$$

где M_{15}^0 – балочный изгибающий момент в сечении 15 балки AB (рис. 4.15, б).

Из этого уравнения найдем усилие S_{3-4} .

Усилие в стержне 3-15. Воспользуемся способом проекций всех сил, расположенных слева от сечения. В результате получим

 $Q_{\rm neb}^0 - H \, {\rm tg} \varphi - S_{3-15} \sin \alpha = 0 \,,$

где $Q_{\text{лев}}^0 = R_A^0 - \sum_{i=1}^m F_i$; M – число сосредоточенных сил, расположенных

слева от сечения I-I (рис. 4.15, б) в балке AB.

Усилие в стержне 16-15. Составим уравнение моментов левых (правых) сил относительно точки 3 :

$$M_3^0 - Hy_{21} - S_{16-15}h = 0.$$

Отсюда мы и определим неизвестное усилие в стержне проезжей части S_{16-15} . Аналогично находятся усилия во всех остальных стержнях фермы.

В заключение этого пункта отметим, что, если функции проезжей части системы выполняет сплошная балка (со средним шарниром *C*), то изгибающий момент и поперечная сила в любом ее сечении определяются по формулам

$$\boldsymbol{M}_{\boldsymbol{X}} = \boldsymbol{M}_{\boldsymbol{X}}^{0} - \boldsymbol{H}\boldsymbol{y}_{\boldsymbol{X}}, \qquad (4.44)$$

$$Q_{\chi} = Q_{\chi}^0 - H \operatorname{tg} \varphi_{\chi}. \tag{4.45}$$

4.8.2. Расчет комбинированных систем на подвижную нагрузку

Линия влияния горизонтальной составляющей усилия в тросе (распоре *H*).

На основании формулы (4.41) имеем

л.в.
$$H = \pi.B. M_C^0 \frac{1}{f}$$
.

Линия влияния распора *H* показана на рис. 4.15, в.

Линия влияния опорной реакции R'_{A} . Из формулы (4.40) видим, что линия влияния R'_{A} равна алгебраической сумме двух линий влияния (рис. 4.15, г, д):

л.в.
$$R'_{A} = \pi.B. R^{0}_{A} + \pi.B. H(-tg\phi)$$
.

Обращает на себя внимание значительная разгрузка балочной фермы, обуславливаемая влиянием распора H. Линия влияния имеет отрицательный участок (рис. 4.15, е): нагрузка, расположенная на этом участке, вызывает реакцию R'_A , направленную вниз, причем левый конец балочной фермы стремится оторваться от опоры.

Линия влияния усилия в стержне 3-4. В соответствии с приведенной ранее формулой

л.в.
$$S_{3-4} = \pi.B. M_{15}^0 \left(-\frac{1}{h}\right) + \pi.B. H \frac{y_k}{h}$$

Процесс построения этой линии влияния и окончательный график показан на рис. 4.15, ж, з, и.

РАЗДЕЛ 5

ТЕОРИЯ ПЕРЕМЕЩЕНИЙ

Перемещением данной точки сооружения называется изменение ее координаты, вызванное деформацией сооружения, т. е. относительным удлинением (укорочением) или искривлением его стержней. Деформации сооружения зависят от изгибающих и крутящих моментов, продольных и поперечных сил, возникающих в сечениях элементов сооружения от заданной внешней нагрузки, температуры, смещения опорных или других связей. Поэтому определению перемещений обычно предшествует определение усилий и построение соответствующих эпюр.

Общий метод определения перемещений, который здесь будет изложен, применим к линейно-деформируемым системам, т. е. к таким системам, которые выполнены из идеально упругого материала; имеют идеально гладкие, лишенные трения шарнирные соединения; обладают геометрической неизменяемостью; допускают малые перемещения (например, допускаемые перемещения в мостовых фермах составляют 1/500 – 1/1000 пролета); подчиняются принципу независимости действия сил. К линейно-деформируемой нельзя в общем случае отнести комбисистему, рассмотренную нированную В разд. 4. Однако, если зафиксировать полный распор H, то и эта система реагирует линейно на любую поперечную нагрузку.

Общие методы нахождения перемещений базируются на работе сил, приложенных к упругой системе. В основу определения перемещений положен принцип возможных перемещений для деформируемой системы, изложенный в курсе теоретической механики и в п. 5.4.

5.1. Действительная работа внешних сил

Будем различать действительные и возможные перемещения. Понятие возможных перемещений дадим далее. Сейчас отметим, что под действительным перемещением Δ_{FF} (рис. 5.1, а) будем понимать перемещение, вызванное силой F, меняющейся от нуля до окончательного значения согласно рис. 5.1, б.

Рис. 5.1. К выводу формулы для действительной работы внешних сил

Так как сила *F* изменяется по линейному закону, то можем записать $\Delta_{FF} = kF$, (5.1)

где *k* – коэффициент пропорциональности.

Элементарная работа внешней силы F будет равна (см. рис. 5.1, б)

$$dW_{x} = F_{x} d\Delta_{x} . \tag{5.2}$$

Полная работа

$$W_F = \int_0^F F_X d\Delta_X \,. \tag{5.3}$$

Согласно (5.1), $\Delta_x = kF_x$ и $d\Delta_x = kdF_x$. Подставив эти равенства в (5.3), найдем

$$W_F = \int_0^F F_X k dF_X = k \frac{F^2}{2} = F \frac{\Delta_{FF}}{2}.$$
 (5.4)

Действительная работа внешней силы *F* равна половине произведения силы на перемещение точки ее приложения по направлению силы (теорема Клапейрона).

Выясним, как выражается работа (5.4) в случае статического (рис. 5.1, б) действия нескольких сил (рис. 5.2).

Рис. 5.2. К распространению теоремы Клапейрона на случай действия нескольких сил

Показанные на рис. 5.2 перемещения являются суммарными, т. е.

$$\begin{split} &\Delta_1 = \Delta_{11} + \Delta_{12} + \Delta_{13} + \Delta_{14} \,; \\ &\Delta_2 = \Delta_{21} + \Delta_{22} + \Delta_{23} + \Delta_{24} \,; \\ &\Delta_3 = \Delta_{31} + \Delta_{32} + \Delta_{33} + \Delta_{34} \,; \\ &\Delta_4 = \Delta_{41} + \Delta_{42} + \Delta_{43} + \Delta_{44} \,. \end{split}$$

Теперь представим, что все силы (рис. 5.2) прикладываются к балке одновременно и при этом нарастают от нулевого до окончательного значения, сохраняя между собой одну и ту же пропорцию. Тогда равенство (5.4) приобретает следующий вид

$$W = \frac{1}{2} \sum_{i=1}^{n} F_i \Delta_i \tag{5.5}$$

и читается так: суммарная работа внешних сил равна полусумме произведений окончательного значения каждой силы на окончательное значение соответствующего ей суммарного перемещения.

5.2. Действительная работа внутренних сил

Когда упругое тело нагружается внешней нагрузкой, то работу совершают не только внешние, но также внутренние силы, которые развиваются во всех деформируемых системах. Внутренними силами мы будем считать силы противоположного внешним направления. Благодаря этому работа внутренних сил всегда отрицательна.

Выделим из прямолинейного стержня бесконечно малый элемент *ds* (рис. 5.3).

К элементу ds в общем случае плоской задачи приложены продольная сила N, изгибающий момент M и поперечная сила Q.

Работу внутренних сил получим как сумму работ, совершенных статически возрастающими усилиями *N*, *M*, *Q* отдельно, т. е. используем принцип независимости действия сил, о котором говорилось вначале этого раздела.

5.2.1. Работа внутренних продольных сил

Если нормальное усилие, равномерно распределенное по сечению, достигло величины N, то удлинение элемента равно (рис. 5.4.)

Рис. 5.4. К выводу формулы работы внутренних продольных сил

Так как в рассматриваемом процессе сила постепенно возрастает от нуля до значения N, то элементарная работа внутренних сил в пределах элемента равна

$$-\frac{1}{2}N\frac{Nds}{EA} = -\frac{N^2ds}{2EA}.$$
(5.7)

111

Чтобы получить полную работу внутренних продольных сил, нужно проинтегрировать элементарные работы по длине стержня и просуммировать по всем стержням сооружения, т. е.

$$W_{N} = -\sum \int \frac{N^{2} ds}{2EA}.$$
 (5.8)

Интеграл, входящий в состав формулы (5.8), определенный, хотя и записан здесь без указанных пределов.

5.2.2. Работа внутренних изгибающих моментов

Если элемент ds подвергается изгибу, то оба крайних его сечения в результате деформации перестают быть параллельными между собой, они поворачиваются друг относительно друга на некоторый бесконечно малый угол $d\phi$ (рис. 5.5).

Рис. 5.5. К выводу формулы работы изгибающих моментов

Из курса сопротивления материалов известно, что

$$d\phi = \frac{Mds}{EJ}$$

Совместная работа обеих пар выражается согласно (5.4) произведением

$$-\frac{1}{2}M\frac{Mds}{EJ} = -\frac{M^2ds}{2EJ}.$$
(5.9)

Полная работа внутренних изгибающих моментов выражается следующей формулой:

$$W_{M} = -\sum \int \frac{M^2 ds}{2EJ}.$$
 (5.10)

5.2.3. Работа внутренних тангенциальных сил

Если элемент стержня длиной *ds* подвергается действию тангенциальных усилий, возникающих при изгибе, то внутренние тангенциальные силы также совершают работу (рис. 5.6).

Рис. 5.6. К выводу формулы работы внутренних тангенциальных (поперечных) сил

В любой полоске, которая параллельна нулевой линии Z-Z и имеет площадь dA, действует в плоскости сечения сдвигающее напряжение

$$\tau = \frac{QS_z}{b(z)J_z},\tag{5.11}$$

где Q – равнодействующая тангенциальных сил в сечении; S_z – статический момент площади, расположенной выше сечения, в котором определяется касательное напряжение (статический момент отсеченной площади); b(z) – ширина сечения (рис. 5.6, б); J_z – момент инерции сечения относительно оси Z, проходящей через центр тяжести сечения.

Взаимный линейный сдвиг двух соответствующих полосок, взятых на обоих торцах *AB* и *A'B'* элемента *ds* (рис. 5.6, а, б), будет

$$\frac{\tau ds}{G},$$

где *G* – модуль сдвига, связанный с модулем упругости *E* следующей зависимостью

$$G=\frac{E}{2(1+\nu)},$$

где V – коэффициент Пуассона.

Работа сил сдвига на протяжении элемента *ds* при постепенном возрастании этих сил выражается произведением

$$-\int_{A} \tau dA\left(\frac{\tau ds}{2G}\right) = -\frac{ds}{2G}\int_{A} \tau^{2} dA = -\frac{Q^{2} ds}{2GA}\frac{A}{J^{2}_{z}}\int_{A} \frac{S^{2}_{z}}{b(z)^{2}} dA.$$

Обозначим

$$\mu = \frac{A}{J_{z}^{2}} \int \frac{S_{z}^{2}}{b(z)^{2}} dA \quad -$$
 (5.12)

отвлеченное число, которое не зависит от внешней нагрузки, а зависит исключительно от формы сечения. Для прямоугольника со сторонами *а* и

h = 1,2; для круга $\mu = \frac{32}{27};$ для прокатных профилей $\mu = A/A_s$, где $A_s = 1$ площадь вертикальной стенки.

С учетом (5.12) полная работа тангенциальных сил стержневой системы равна

$$W_Q = -\sum \int \frac{\mu Q^2 ds}{2GA}.$$
 (5.13)

Чтобы получить полную работу всех внутренних сил, просуммируем работы (5.8), (5.10) и (5.13):

$$W = -\sum \int \frac{N^2 ds}{2EA} - \sum \int \frac{M^2 ds}{2EJ} - \sum \int \frac{\mu Q^2 ds}{2GA}.$$
 (5.14)

Совокупность интегралов, стоящих под знаком каждой из трех сумм, простирается на все элементы стержневой системы.

Для пространственной стержневой системы получается аналогичная формула, но содержащая три момента (два изгибающих и крутящий) и две поперечные силы (рис. 5.7):

$$W = -\sum \int \frac{M^2 ds}{2EA} - \sum \int \frac{M^2_z ds}{2EJ_z} - \sum \int \frac{M^2_y ds}{2EJ_y} - \sum \int \frac{M^2_x ds}{2GJ_d} - \sum \int \frac{\mu_y Q^2_y ds}{2GA} - \sum \int \frac{\mu_z Q_z ds}{2GA}.$$
(5.15)

Рис. 5.7. Внутренние силы в сечениях пространственного стержня

В формуле (5.15) *J*_d – момент инерции при кручении; μ_z – коэффициент формы сечения относительно оси *У*, определяемый аналогично (5.12).

Работа (5.14), (5.15) является квадратичной функцией внешних или внутренних сил. Отсюда следует, что работа сил, вызывающих деформацию тела, не подчиняется принципу независимости действия сил, т. е. совместная работа, произведенная несколькими нагрузками, не равна сумме тех работ, которые могли бы быть произведены каждой нагрузкой в отдельности. Причину этого явления, которое, на первый взгляд, является неожиданным, легко понять из простого примера (рис. 5.8).

Рис. 5.8. К иллюстрации суммарной работы внешних сил

Пусть сначала действует сила *F*. Она вызывает перемещение

 $\frac{F\ell}{FA}$

и совершает работу (см. (5.4), рис. 5.8)

После того как наступило равновесие, подействовала сила *Q*. Она вызывает добавочное удлинение

 $\frac{Q\ell}{EA}$,

 $W_F = \frac{F^2 \ell}{2F\Delta}.$

совершает работу $\frac{Q^2 \ell}{2EA}$ и вовлекает в работу силу *F*, которую та и совершает (оставаясь постоянной)

Таким образом, работа сил *F* и *Q* равна

$$V_{F,Q} = \frac{1}{2EA} = \frac{1}{2EA} + \frac{1}{2EA} + \frac{1}{EA}$$

 $H(- (F+Q)^2 \ell - F^2 \ell + Q^2 \ell + FQ \ell)$

5.3. Возможные перемещения и возможная работа внешних и внутренних сил

Под возможными перемещениями будем понимать весьма малые перемещения точек оси сооружения, допускаемые имеющимися связями и не зависящие от заданной системы сил.

Рассмотрим балку (рис. 5.9). Приложим к этой балке силу F, которая изменяется от нуля до своего конечного значения. В результате своего действия сила F вызывает перемещение Δ_{FF} и совершает работу (5.4).

$$Frac{Q\ell}{EA}.$$

Рис. 5.9. К выводу формул для возможной работы внешних сил

К балке в деформированном состоянии (деформированное состояние рассматривается лишь для иллюстрации, в дальнейшем, учитывая малые перемещения, не будем делать различия между начальными и деформированными состояниями) прикладываем силу K. Сила K, действуя в таком же режиме, как и сила F, совершает работу на собственных перемещениях Δ_{KK} и вовлекает в работу силу F, вызывая перемещение Δ_{FK} . Так как перемещение Δ_{FK} не зависит от силы F (сила F осталась постоянной), то работа силы F выразится произведением силы F на перемещение Δ_{FK} :

$$A_F = F \Delta_{FK} . \tag{5.16}$$

Возможная работа внутренних сил на перемещениях, вызванных силой K, запишется для плоской стержневой системы по аналогии с (5.14):

$$A_{F} = -\sum \int \frac{N_{F}N_{k}ds}{EA} - \sum \int \frac{M_{F}M_{k}ds}{EJ} - \sum \int \frac{\mu Q_{F}Q_{k}ds}{GA}, \qquad (5.17)$$

где $\frac{N_k ds}{EA}$, $\frac{M_k ds}{EJ}$, $\frac{\mu Q_k ds}{GA}$ – перемещения, вызванные силой K; N_F , M_F , Q_F – внутренние силы, вызванные силой F.

Рассмотрим теперь возможную работу внешней силы *F* на температурных перемещениях и перемещениях, вызванных смещением опорных связей (рис. 5.10).

Рис. 5.10. К выводу формулы для нахождения возможных работ внешних сил на температурных перемещениях и перемещениях опорных связей

Сила F, изменяясь от нуля до конечного значения, вызывает перемещение Δ_{FF} и совершает работу (об этом говорилось выше). Теперь, когда сила F закончила свое действие, к балке прикладываются температурные воздействия (рис. 5.11, а).

Рис. 5.11. Схема температурных воздействий на элемент *ds*

Эпюра температурных воздействий на элемент ds показана на рис. 5.11, б. Принято, что по высоте сечения температура изменяется по линейному закону. Эпюра температурных воздействий разложена на эпюру, характеризующую симметричные воздействия с осевой температурой t (рис. 5.11, в), и эпюру, характеризующую обратно симметричные воздействия (искривление) с температурой $\frac{t'}{2}$ (рис. 5.11, г).

Симметричные температурные воздействия вызывают перемещения элемента *ds*, равные

atds,

где α – температурный коэффициент, зависящий от материала, из которого изготовлена конструкция, а кососимметричные температурные воздействия искривляют элемент *ds*, вызывая наклон вертикальных граней на малый угол

$$d\phi = \frac{\alpha t' ds}{h}$$

Ha перемещениях, вызванных симметричной температурой, работают продольные силы N_F (продольная сила N возникает в балке, показанной на рис. 5.10, а, если обе ее опоры шарнирно-неподвижны, т. к. балка при температурных воздействиях, удлиняясь, встречает сопротивление опор), а на угловых перемещениях – изгибающие моменты *M_F*. Таким образом, полная работа внутренних сил стержневой системы на температурных перемещениях будет

$$A_t = -\sum \int \alpha t N_F ds - \sum \int \frac{\alpha t'}{h} M_F ds.$$
 (5.18)

Что касается возможной работы внутренних сил на смещении опорной связи (рис. 5.10, б), то она может быть выражена формулой, аналогичной (5.6), т. е.

$$A_{\Delta} = RC, \qquad (5.19)$$

где R – реакция в той связи, которая по условию задачи перемещается; C – заданное смещение связи.

5.4. Общая формула для определения перемещений

Желая получить формулу, одинаково пригодную для всех видов балок, ферм, рам, арок и т. п., мы должны исходить из такого закона, который в одинаковой мере применим ко всем названным системам. Таким законом является принцип возможных перемещений:

если система находится в равновесии под действием приложенных к ней внешних сил, то при всяком возможном бесконечно малом перемещении точек этой системы (бесконечно малой деформации) сумма работ ее внешних и внутренних сил равна нулю.

Рассмотрим, например, раму, находящуюся под действием заданной нагрузки, температуры, и, кроме того, опора B этой рамы переместилась в положение B'. Требуется определить перемещение точки C в произвольном направлении i-i (рис. 5.12, а), т. е. Δ_{ik} . Какие бы возможные бесконечно малые перемещения мы ни дали нашей системе, сумма работ внешних и внутренних сил состояния j на этих перемещениях будет равна нулю. Следовательно, мы можем составить соответствующее уравнение работ бесконечным множеством способов.

Однако, ни одно из этих уравнений не приведет нас к цели, если в него не войдет искомое перемещение Δ_{ij} (рис. 5.12, а).

Рис. 5.12. К построению общей формулы для определения перемещений

Поступим так. Запишем уравнение работ не для действительного состояния сооружения j, а для воображаемого, виртуального, специально подобранного состояния i (рис. 5.12, б). Оно содержит лишь одну внешнюю нагрузку, а именно – силу, равную единице и приложенную в той самой точке C сооружения и по тому направлению, по которому требуется разыскать перемещение. Тогда, принимая состояние i за действительное состояние, а состояние j за возможное, получим

$$1 \cdot \Delta_{ij} + A_F + A_t + \sum RC = 0, \qquad (5.20)$$

где $1 \cdot \Delta_{ij}$ – работа силы $F_i = 1$; A_F – возможная работа внутренних сил состояния i на перемещениях, вызванных силами состояния j (5.17); A_t – возможная работа внутренних сил состояния i на температурных перемещениях состояния j (5.18); $\sum RC$ – возможная работа реакций состояния i на перемещениях j (5.19).

Из уравнения (5.20) с учетом (5.17), (5.18), (5.19) найдем

$$\Delta_{ij} = \sum \int \frac{N_i N_j ds}{EA} + \sum \int \frac{M_i M_j ds}{EJ} + \sum \int \frac{\mu Q_i Q_j ds}{GA} + \sum \int \alpha t N_i ds + \sum \int \frac{dt'}{h} M_i ds - \sum RC.$$
(5.21)

Полученная формула (5.21) дает общее решение, которое годится для всех плоских упругих геометрически неизменяемых стержневых систем. Справедлива она только в том случае, когда деформации, вызванные отдельными факторами – нагрузкой, температурой и перемещениями опор, достаточно малы, чтобы оправдать применение закона независимости действия сил.

Первые три слагаемых в этой формуле представляют перемещение от действия внешней нагрузки (интеграл О. Мора, 1874 г.). Четвертый и пятый члены формулы (5.21) представляют перемещение от изменения 119 температуры *Т*. Последний член представляет перемещение от заданного смещения связей. Символ $\sum \int$ в формуле (5.21) обозначает, что интегрирование производится по длинам всех стержней, составляющих сооружение. В последнем члене формулы (5.21) предусмотрено суммирование произведений *RC*. Технику вычисления перемещений по формуле (5.21) рассмотрим в дальнейшем от каждого из трех воздействий.

Когда эпюры N_j , M_j , Q_j , а также температура и перемещения опорных и других связей заданы (рис. 5.13, а), то для определения каждого перемещения требуется подобрать соответствующую ему возможную (виртуальную) систему.

Рис. 5.13. Примеры выбора возможных (виртуальных) состояний системы

Если необходимо определить вертикальное перемещение точки C, то возможное состояние рамы характеризуется тем, что в точке C вертикально приложена единичная сила (рис. 5.13, б). При нахождении горизонтального и углового перемещений точки B возможные состояния должны быть такими, как показано на рис. 5.13, в, г. Если нужно определить взаимные перемещения (например, взаимное линейное перемещение точек C и D или взаимный угол поворота опор A и B), то возможные системы должны быть представлены парами единичных сил или моментов (рис. 5.13, д, е).

5.5. Определение перемещений от заданной внешней нагрузки

Для вычисления перемещений от заданной внешней нагрузки используем первые три члена универсальной формулы (5.21), заменив индексы j на F и i на k:

$$\Delta_{kF} = \sum \int \frac{N_k N_F ds}{EA} + \sum \int \frac{M_k M_F ds}{EJ} + \sum \int \frac{\mu Q_k Q_F ds}{GA}, \quad (5.22)$$

где N_k , M_k , Q_k – выражения внутренних усилий как функции координасечения ОТ единичной обобщенной ты *S* произвольного силы, приложенной в точке К по направлению искомого перемещения (см. п. 5.4); N_F, M_F, Q_F – выражения внутренних сил как функции координаты S от заданной внешней нагрузки; E – модуль упругости материала стержня; G = E/2(1 + v) — модуль сдвига (см. п. 5.2.3); v коэффициент Пуассона (см. также п. 5.2.3); А – площадь поперечного сечения стержня; Ј – момент инерции относительно оси, проходящей через центр тяжести сечения, т. е. нейтральной оси (если стержень имеет большую кривизну h/R > 1/5, нейтральный слой при чистом изгибе не совпадает с центром тяжести сечения, поэтому использовать формулу (5.22) в этом случае нельзя); μ – коэффициент формы сечения (см. п. 5.2.3).

При EA = const, EJ = const, GA = const по длине каждого стержня выражение (5.22) принимает вид

$$\Delta_{kF} = \sum \frac{1}{EA} \int N_k N_F ds + \sum \frac{1}{EJ} \int M_k M_F ds + \sum \frac{\mu}{GA} \int Q_k Q_F ds. \quad (5.23)$$

Формулы (5.22) и (5.23) позволяют определить любые обобщенные перемещения. При этом в качестве обобщенной силы принимаются: при вычислении линейного перемещения – сосредоточенная сила F = 1; при вычислении углового перемещения – сосредоточенный единичный момент M = 1; при вычислении взаимного линейного перемещения двух точек – две равные и в противоположные стороны направленные сосредоточенные силы по прямой, соединяющей точки; при вычислении взаимного поворота двух сечений – сосредоточенные единичные моменты в обоих сечениях, направленные в противоположные стороны стороны (см. рис. 5.13).

Если рассматриваются сооружения, преимущественно работающие на изгиб (балки, рамы, а часто и арки), то в формулах перемещений (5.22) и (5.23) без существенной погрешности можно оставить только интеграл, зависящий от изгибающих моментов. Покажем это. Рассмотрим консольную балку (рис. 5.14, а). Примем *EJ* = const, *GA* = const.

Рис. 5.14. Влияние формы сечения консольной балки на перемещение ее конца

Определим вертикальное перемещение точки K (рис. 5.14, а). Так как здесь $N_k = 0$, то формула (5.23) принимает следующий вид:

$$\Delta_{kF} = \frac{1}{EJ} \int_{0}^{\ell} M_{k} M_{F} dx + \frac{\mu}{GA} \int_{0}^{\ell} Q_{k} Q_{F} dx;$$

$$M_{F} = -Fx; \quad M_{k} = -1 \cdot x; \quad Q_{F} = -F; \quad Q_{k} = -1; \quad G = \frac{E}{2(1+\nu)}$$

После интегрирования и простейших преобразований имеем

$$\Delta_{kF} = \frac{F\ell^3}{3EJ} \left[1 + \frac{6\mu(1+\nu)J}{A\ell^2} \right].$$
(5.24)

Рассмотрим прямоугольное сечение с размерами b и h (рис. 5.14, б). Площадь сечения A = bh, момент инерции $J = bh^3 / 12$. После подстановки A и J в выражение (5.24) получаем

$$\Delta_{kF} = \frac{F\ell^3}{3EJ} \left[1 + \frac{\mu(1+\nu)}{2} \left(\frac{h}{\ell} \right)^2 \right].$$

При коэффициенте Пуассона v = 0,3 и коэффициенте формы сечения $\mu = 1,2$ прогиб, вызванный деформацией сдвига (второй член формулы) по сравнению с прогибом, вызванным деформацией изгиба (первый член формулы), составляет

при
$$\frac{h}{\ell} = \frac{1}{5} - 3,12$$
 %; при $\frac{h}{\ell} = \frac{1}{10} - 0,78$ %.

Таким образом, влияние поперечных сил на прогиб тем меньше, чем меньше отношение h/ℓ . При

$$\frac{h}{\ell} < \frac{1}{10}$$

без существенной погрешности можно пренебречь деформациями сдвига.

Теперь рассмотрим сечение балки из прокатного профиля (двутавра) (рис. 5.14, в). Примем двутавр № 20 (см. сортамент прокатной стали, ГОСТ 8239-72). Для него $A = 26.8 \text{ см}^2$, $J_x = 1840 \text{ см}^4$; h = 20 см; d = 0.52 см; t = 0.84 см.

Пусть $\frac{h}{\ell} = \frac{1}{5}$, тогда $\ell = 100$ см. Определим коэффициент формы сечения

$$\mu = \frac{A}{A_s} = \frac{26,8}{0,52(20 - 1,68)} = 2,813.$$

Подставив μ в (5.24), найдем, что прогиб, вызванный деформацией сдвига, составляет 15,06 % от прогиба, вызванного деформацией изгиба.

При $\frac{h}{\ell} = \frac{1}{10}$ влияние деформаций сдвига оценивается в 3,76 %. При $\frac{h}{\ell} = \frac{1}{15} - 1,67$ %; при $\frac{h}{\ell} = \frac{1}{20} - 0,94$ %. К таким же результатам можно прийти, рассматривая другие балки, поперечное сечение которых состоит из прокатных профилей. Следовательно, если рассматриваемая балка состоит из прокатных профилей, то отношение $\frac{h}{\ell}$, когда можно пренебречь деформациями сдвига, должно быть равно

$$\frac{h}{\ell} \leq \frac{1}{20} \; .$$

Итак, для изгибаемых элементов

$$\Delta_{kF} = \sum \frac{1}{EJ} \int M_k M_F ds. \qquad (5.25)$$

При расчете сооружений, элементы которых работают на центральное растяжение или сжатие (ферма), отсутствуют деформации изгиба и сдвига, т. е.

$$\Delta_{kF} = \sum \frac{1}{EA} \int N_k N_F ds = \sum_{i=1}^n \frac{N_{k,i} N_{F,i} \ell_i}{E_i A_i}, \qquad (5.26)$$

где *n* – число стержней фермы.

Вычисление интегралов, входящих в формулу (5.25), когда одно из усилий M_k или M_F изменяется по линейному закону, может быть осуществлено по правилу Верещагина "перемножением" эпюр, т. е.

$$\int_{A}^{B} M_{k} M_{F} ds = \omega y_{0} , \qquad (5.27)$$

где ω – площадь криволинейной эпюры; y_0 – ордината под центром тяжести криволинейной эпюры, взятая на прямолинейной эпюре. Если обе эпюры прямолинейные, то безразлично, для какой эпюры брать площадь ω , а для какой – ординату y_0 . В табл. 5.1 приведены примеры вычисления интеграла (5.27) для некоторых простейших эпюр. Заметим, что любую сложную эпюру всегда можно представить суммой простых фигур (треугольников и парабол) (рис. 5.15).

Рис. 5.15. Пример представления эпюры *М* как суммы простых эпюр

В общем случае более сложных эпюр удобной для вычисления интеграла (5.27) является формула Симпсона

$$\int_{A}^{B} M_{k} M_{F} ds = \frac{I}{6EJ} \left(M_{F}^{\pi} M_{k}^{\pi} + 4M_{F}^{c} M_{k}^{c} + M_{F}^{\pi} M_{k}^{\pi} \right),$$

где M_F^{π} , M_F^{π} , M_K^{c} , M_K^{π} , M_K^{n} , M_K^{c} – ординаты грузовой M_F и единичной M_k эпюр у крайних и средней точках участка; I – длина участка.

Для криволинейных участков стержней и стержней с переменной жесткостью при вычислении перемещений необходимо производить интегрирование, предварительно выразив все подинтегральные величины в функции от одной переменной. Если подинтегральная функция трудно поддается интегрированию, интеграл с достаточной степенью точности можно вычислить приближенно. С этой целью ось стержня разбивается на несколько участков длиной ΔS , а затем каждый участок принимается принимаются постоянными, равными средним их значениям. Тогда (если учитывать только изгибающие моменты)

$$\int \frac{M_k M_F}{EJ} ds = \sum \frac{M_{k(cp)} M_{F(cp)}}{EJ_{cp}} \Delta s.$$
(5.28)

Точность вычисления увеличивается за счет большего количества принятых участков.

Примеры вычислени	Таблица 5.1 (5.27)
Ý ji þôù M_F è M_V	Значение интеграла
$A \xrightarrow{2/3\ell} a M_F$ $A \xrightarrow{2/3b} b M_k$ $B \xrightarrow{\ell} B$	$\int_{A}^{B} M_{F} M_{k} dx = \frac{abl}{3}$
$A \xrightarrow{2/3\ell} a M_F$ $B \xrightarrow{1/3b} M_k$	$\int_{A}^{B} M_{F} M_{k} dx = \frac{abl}{6}$
$\omega_{1} = \frac{1}{2}b\ell$ $a \longrightarrow 2 = \frac{1}{2}a\ell$ $b \longrightarrow 2 = \frac{1}{2}a\ell$	$\int_{A}^{B} M_{F}M_{K}dx = \frac{1}{6}[a(2c+d)+b(2d+c)]$
$A = \frac{\frac{a+b}{2}}{\frac{a+b}{2}} b M_{K}$	$\int_{A}^{B} M_F M_k dx = \frac{ql^3}{24}(a+b)$
$ \begin{array}{c} I_{1} \\ I/2 \\ \hline \hline $	$\int_{A}^{B} M_{F} M_{k} dx = \frac{2}{3} \frac{q l^{2}}{8} l_{1} \frac{1}{2} (a + b) =$ $= \frac{q l^{2} l_{1}}{24} (a + b)$

5.5.1. Пример определения перемещений от заданной внешней нагрузки

Для заданной рамы (рис. 5.16) требуется определить взаимный поворот сечений *A* и *B* с учетом только изгибных деформаций.

Рис. 5.16. Расчетная схема рамы

Построим сначала эпюру моментов от заданной внешней нагрузки. Найдем опорные реакции. Для нахождения реакции R_A составим уравнение моментов левых сил относительно шарнира E (сечение I-I):

$$R_A \cdot 4 - 20 \cdot 4 \cdot 2 = 0$$

Отсюда $R_A = 40 \text{ кH}.$

Для определения реакций R_B и H_B составим систему уравнений правых сил относительно шарниров L и E (сечение II-II и III-III):

$$R_B \cdot 5 - H_B \cdot 9 - 100 \cdot 3 = 0$$
,
 $R_B \cdot 5 - H_B \cdot 6 - 100 \cdot 3 = 0$.

Решив эту систему, найдем $H_B = 0$; $R_B = 60$ кH.

Спроектируем все силы, действующие на раму, на горизонталь:

$$H_C - H_B = 0.$$

Отсюда $H_C = 0$.

Составим уравнение моментов сил, расположенных ниже шарнира *E* на стойке *EC* (сечение IV-IV). Получаем $M_C = 0$. Спроектировав все силы на вертикаль, найдем $R_C = 80$ кН. Эпюра моментов показана на рис. 5.17, а.

Рис. 5.17. Эпюра моментов от внешней нагрузки (а) и единичная эпюра моментов (б)

Для нахождения взаимного поворота сечений **A** и **B** приложим к вспомогательному состоянию рамы два равных и в противоположные стороны направленных единичных момента (рис. 5.17, б). Как и ранее, найдем опорные реакции и построим единичную эпюру.

Определим искомое взаимное перемещение сечений A и B. Участки, где имеются эпюры M_k и M_F , – DE и LM (рис. 5.17, a, б).

$$\Delta_{kF}^{0} = \frac{1}{EJ} \left[\frac{1}{3} \cdot \frac{20 \cdot 4^{3}}{12} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} \cdot 120 \cdot 0, 6\sqrt{34} \cdot \frac{2}{3} \cdot 0, 6 + \frac{1}{4} \cdot \frac{1}{2} \cdot 120 \cdot 0, 4 \times \sqrt{34} \left(\frac{2}{3} \cdot 0, 6 + \frac{1}{3} \cdot 1 \right) \right] = \frac{64,43}{EJ} \text{ рад.}$$

Перемещение получилось со знаком "плюс", следовательно, сечения *A* и *B* поворачиваются навстречу друг другу (по направлению единичных моментов (рис. 5.17, б).

5.6. Определение перемещений от температурных воздействий

Для определения перемещений от изменения температуры используем четвертый и пятый члены универсальной формулы (5.21)

$$\Delta_{kF} = \pm \sum \int \alpha t N_k ds \pm \sum \int \frac{\alpha t'}{h} M_k ds.$$
(5.29)

Здесь использованы обозначения величин, принятые ранее (см. рис. 5.11). По сравнению с общей формулой здесь индекс *i* заменен на *k*. Значения температурных коэффициентов приведены в табл. 5.2.

Таблица 5.2

Материал	α
Алюминий	$255 \cdot 10^{-7}$
Магний	$255 \cdot 10^{-7}$
Медь	$167 \cdot 10^{-7}$
Бронза и латунь	$(170 - 220) \cdot 10^{-7}$
Бетон	$(100 - 140) \cdot 10^{-7}$
Сталь	$(100 - 130) \cdot 10^{-7}$
Каменная кладка	$(40-70) \cdot 10^{-7}$
Дерево	$(20-50)\cdot 10^{-7}$

Коэффициенты линейного расширения α (на 1⁰ C)

Если α , t, t', h – постоянные по длине стержня, то формула (5.29) принимает следующий вид:

$$\Delta_{kt} = \pm \sum \alpha t \omega_{Nk} \pm \sum \frac{\alpha t'}{h} \omega_{M}, \qquad (5.30)$$

где ω_N , ω_M – площади эпюр N_k и M_k на рассматриваемых участках.

Правила знаков перед первым и вторым членами формулы (5.30) приняты следующими.

Перед первым членом знак "плюс" принимается в том случае, если продольная сила и температура t вызывают одновременно укорочение или удлинение элемента. Если температура укорачивает (удлиняет) элемент, а продольная сила удлиняет (укорачивает), то перед первым членом формулы (5.30) ставится знак "минус".

Перед вторым членом формулы (5.30) знак "плюс" принимается в том случае, если температура и изгибающий момент искривляют рассматриваемый элемент в одну сторону. Если в разные стороны – принимается знак "минус".

Таким образом, чтобы определить любое перемещение от заданного температурного воздействия, необходимо к сооружению приложить обобщенную единичную силу в заданную точку K и построить единичные эпюры N_k и M_k . Далее перемещение определяется по формулам (5.29) или (5.30).

5.6.1. Пример определения перемещений от температурных воздействий

Для заданной рамы (рис. 5.18) требуется определить горизонтальное перемещение точки *К*.

Рис. 5.18. Расчетная схема рамы

В соответствии с изложенным в п. 5.6 порядком определения перемещений прикладываем в точке *К* горизонтальную единичную силу (рис. 5.19).

Рис. 5.19. Эпюры изгибающих моментов M_k и продольных сил N_k

Определяем опорные реакции:

$$\sum M_B = 0: \quad R_A \cdot 4 - 1 \cdot 8 = 0, \qquad R_A = 2;$$

$$\sum F_y = 0: \quad R_A - R_B = 0, \quad R_A = R_B = 2;$$

$$\sum M_c^{\text{neb}} = 0: \quad R_A \cdot 3 - H_A \cdot 7,25 = 0, \quad H_A = 0,8275;$$

$$\sum F_x = 0: \quad H_A + H_B - 1 = 0, \qquad H_B = 0,1725.$$

Проверка: $\sum M_c^{\Pi p} = 0$: $R_B \cdot 1 - H_B \cdot 7,25 - 1 \cdot 0,75 = 0$.

Эпюры моментов и продольных сил построены на рис. 5.19, а, б.

Определим температуру по оси элементов, составляющих раму, и модуль разности внутренней и наружной температур

$$t = \frac{10 - 20}{2} = -5^{\circ}C, t = |10 + 20| = |30^{\circ}|C.$$

По формуле (5.29) вычисляем искомое перемещение. Знаки перед первым членом формулы (5.29): на участках *AD* и *DK* – минус (температура укорачивает элементы *AD* и *DK*, а продольная сила удлиняет (рис. 5.19, б)), на участке *BK* – плюс.

Знаки перед вторым членом формулы (5.29): на участках AD и DC – плюс (момент и температура искривляют элементы в одну сторону (рис. 5.19, а)), на участках CK и KB – минус.

$$\Delta_{kt} = -\alpha \cdot 5 \cdot 2 \cdot 5 - \alpha \cdot 5 \cdot 1,862 \cdot 5 + \alpha \cdot 5 \cdot 2 \cdot 8 + \frac{\alpha \cdot 30}{1/4} \cdot \frac{1}{2} \cdot 4,1375 \cdot 5 + \frac{\alpha \cdot 30}{1/3} \mathbf{x}$$

$$\mathbf{x} \cdot \frac{1}{2} \cdot 4,13753,75 \cdot \frac{\alpha \cdot 30}{1/3} \cdot \frac{1}{2} \cdot 1,38 \cdot 1,25 - \frac{\alpha \cdot 30}{2/5} \cdot \frac{1}{2} \cdot 1,38 \cdot 8 = 1381,27\alpha.$$

Если считать, что рама стальная (по табл. 5.2 $\alpha = 115 \cdot 10^{-7}$), то искомое перемещение будет равно

$$\Delta_{kt} = 1381,27 \cdot 115 \cdot 10^{-7} = 0,016 \,\mathrm{M} = 1.6 \,\mathrm{cm}.$$

5.7. Определение перемещений от заданного смещения связей

Для нахождения перемещений от заданного смещения связей используем последний член универсальной формулы (5.21)

$$\Delta_{kc} = -\sum_{i=1}^{\gamma} R_{ki} C_i , \qquad (5.31)$$

где R_{ki} — реакция, возникающая от единичной обобщенной силы, приложенной в точке k по направлению искомого перемещения в возможном состоянии (рис. 5.13), в i-й связи, смещение которой задано.

Произведение $R_{ki}C_i$ считается положительным, если направление смещения связи и направление возникающего в нем усилия совпадают.

Для того чтобы найти перемещение какой-либо точки от заданного смещения связей, необходимо в точке K по направлению искомого перемещения приложить единичную силу (момент) и найти реакции в тех связях системы, которые по условию задачи перемещаются. Далее следует воспользоваться формулой (5.31).

5.7.1. Пример определения перемещений от смещения опорных связей

Для заданной рамы (рис. 5.20, а) требуется определить вертикальное перемещение точки *K*.

Рис. 5.20. Расчетная схема рамы (а) и реакции в перемещающихся связях (б)

В точке *К* возможного состояния рамы прикладываем вертикально единичную силу и определяем опорные реакции (рис. 5.20, б).

Вертикальные реакции равны между собой, поскольку рама симметрична относительно вертикальной оси, т. е.

 $R_{A} = R_{B} = 1/2$.

Составим уравнения:

$$\sum M_D^{\text{лев}} = 0 \text{ (сечение I-I на рис. 5.20, б):} H \cdot 6 - M = 0, H = \frac{M}{6}; \sum M_K^{\text{лев}} = 0 \text{ (сечение II-II на рис. 5.20, б):} \frac{1}{2} \cdot 6 + M - H \cdot 9 = 0, \quad \text{или} \quad 3 + M - \frac{M}{6} \cdot 9 = 0; M = 6, \quad H = 1.$$

Теперь по (5.31) найдем перемещение

$$\Delta_{kc} = -\left(-\frac{1}{2} \cdot \frac{6}{50} - 1 \cdot \frac{6}{25} + 6 \cdot \frac{1}{10}\right) = 24 \text{ cm}.$$

5.8. Основные энергетические теоремы

При определении перемещений упругих систем мы использовали принцип возможных перемещений и связанное с ним понятие возможной работы (см. п. 5.3), не затрагивая многих важных свойств этих систем. Теперь рассмотрим эти свойства.

5.8.1. Теорема о взаимности работ

Представим, что линейно-упругая система (рис. 5.21, а, б) последовательно нагружается вначале силой F_1 (рис. 5.21, а), а затем силой F_2 (рис. 5.21, б).

Рис. 5.21. К доказательству теоремы о взаимности работ

Работу этих сил представим в виде суммы

$$A = A_{11} + A_{12} + A_{22}, \qquad (5.32)$$

где A_{11} – работа силы F_1 на перемещении, вызванном этой силой; A_{12} – работа силы F_1 на перемещении, вызванном силой F_2 ; A_{22} – работа силы F_2 на перемещении, вызванном этой же силой.

Если теперь представить загружение в обратной последовательности – вначале силой F_2 , а затем силой F_1 , то ту же работу A можно записать в виде

$$A = A_{22} + A_{21} + A_{11}. \tag{5.33}$$

Из принципа суперпозиции для перемещений следует, что Δ_{22} и Δ_{11} не зависят от последовательности приложения нагрузок F_1 и F_2 . Сравнивая выражения (5.32) и (5.33), можно сделать вывод, что

$$A_{12} = A_{21}, \tag{5.34}$$

т. е. работа силы F_1 на перемещении, вызванном силой F_2 , равна работе силы F_2 на перемещении, вызванном силой F_1 . Данное утверждение называется теоремой о взаимности работ или теоремой Бетти^{*}. Распространим полученное равенство на любое загружение.

Допустим, что упругая система может иметь несколько различных состояний, соответствующих различным загружениям. Пронумеруем эти состояния и сравним два: i и k (рис. 5.22, a, б).

Рис. 5.22. Состояние упругой рамы

Каждое из этих состояний является состоянием равновесия. Перемещения (деформации) в этих состояниях малы и совместимы со связями. Перемещения можно приближенно принять за возможные и применить принцип возможных перемещений (приближенно, потому что перемещения малы, но не бесконечно малые величины). Тогда возможная работа сил *i*-го состояния на перемещениях *k*-го состояния складывается из T_{ik} – работы внешних сил и V_{ik} – работы внутренних сил (см. (5.20)), т. е.

^{*} Бетти Энрико (Betti Enrico) (1823-1892) – итальянский математик. Основные труды относятся к алгебре, математическому анализу, теории функций, математической физике, механике.

$$T_{ik} + V_{ik} = 0. (5.35)$$

Аналогично из равновесия *k*-го состояния следует

$$T_{ki} + V_{ki} = 0. (5.36)$$

Таким образом,

$$V_{ik} = V_{ki}$$

$$II \qquad (5.37)$$

$$T_{ik} = T_{ki}$$

Теорема о взаимности работ может быть сформулирована и так: работа внешних (внутренних) сил i-го состояния системы на перемещениях (деформациях) k-го состояния равна работе внешних (внутренних) сил k-го состояния той же системы на перемещениях (деформациях) i-го состояния.

Существенным моментом является здесь отдельно равенство работ внешних или внутренних сил (5.37). Суммарное равенство $A_{ik} = A_{ki}$ (5.34) не является теоремой, а лишь записью принципа возможных перемещений.

5.8.2. Теорема о взаимности перемещений

Из теоремы о взаимности работ вытекает ряд более частных теорем. Первая из них – теорема о взаимности перемещений.

Допустим, что в обоих состояниях система (рис. 5.23, а, б) загружена обобщенными силами $F_1 = 1$ (рис. 5.23, а) и $F_2 = 1$ (рис. 5.23, б).

Рис. 5.23. К выводу теоремы о взаимности перемещений

Под действием сил F_1 балка получила перемещения δ_{11} (перемещение точки приложения силы $F_1 = 1$ по ее направлению) и δ_{21} (перемещение точки приложения силы $F_2 = 1$).

Под действием силы $F_2 = 1$ перемещения равны δ_{12} и δ_{22} (см. рис. 5.23, а, б).

На основании теоремы о взаимности работ (5.37) имеем

$$\delta_{12} = \delta_{21}$$

$$\delta_{ik} = \delta_{ki}$$
.

И

Перемещение по i-му направлению от k-й единичной силы равно перемещению по k-му направлению от i-й единичной силы (теорема Максвелла^{*}).

5.8.3. Теорема о взаимности реакций

Из теоремы Бетти вытекает также теорема о взаимности реакций, которая справедлива для любой линейно-упругой системы. На рис. 5.24 условно изобразим эту систему в виде неразрезной балки.

Рис. 5.24. К выводу теоремы о взаимности реакций

Рассмотрим два состояния системы. В каждом из них активные внешние силы отсутствуют, но заданы единичные перемещения i-й и k-й связи (рис. 5.24, а, б).

В общем случае статически неопределимой системы от смещения одной связи возникают деформации системы и соответствующие реакции в связях, наложенных на упругую систему. Эти реакции являются внешними связями. Применим теорему о взаимности работ (5.37):

$$T_{ik} = r_{ki} \cdot 1 = T_{ki} = r_{ik} \cdot 1$$

Работа остальных реакций равна нулю, так как равны нулю соответствующие перемещения. В результате получаем

$$r_{ik} = r_{ki} . (5.39)$$

^{*} Максвелл Джеймс Клерк (Maxwell James Clerk) (1831-1879) – английский физик, создатель классической электродинамики, один из основателей статистической физики.

Реакция *і*-й связи от единичного перемещения *k*-й связи равна реакции *k*-й связи от единичного перемещения *i*-й связи.

5.8.4. Теорема о взаимности реакций и перемещений

Еще одна теорема о свойствах упругой системы получается при сравнении двух состояний упругой системы (рис. 5.25).

Рис. 5.25. К выводу теоремы о взаимности реакций и перемещений

В одном состоянии система загружена силой $F_i = 1$, в другом – задано единичное перемещение K-й связи. Работа внешних сил K-го состояния на перемещениях F равна нулю, так как в K-м состоянии внешними силами являются только реакции в связях, а в состоянии i связи не смещаются.

Согласно теореме Бетти работа

$$T_{Fk} = 1 \cdot \delta_{ik} + r_{ki} \cdot 1 = 0,$$

откуда

$$r_{ki} = -\delta_{ik} \,. \tag{5.40}$$

Это равенство является теоремой о взаимности реакций и перемещений: реакция k-й связи от i-й единичной силы численно равна и обратна по знаку перемещению по i-му направлению от единичного перемещения k-й связи (теорема Рэлея^{*}).

5.9. Определение перемещений при помощи фиктивных грузов

^{*} Рэлей Стретт Джон Уильям (Rayleiqh John William) (1842-1919) – английский физик, один из основоположников теории колебаний, член-корреспондент Петербургской АН (1896), член Лондонского королевского общества (1873).

Пусть для системы рис. 5.26, а задана эпюра изгибающих моментов, ограниченная ломаной линией, часть которой изображена на рис. 5.26, б, и пусть также задана эпюра вертикальных перемещений (рис. 5.26, в).

Рис. 5.26. К выводу формулы для фиктивных грузов

Составим выражения для изгибающих моментов и поперечных сил соответственно на участках S_n и S_{n+1} (рис. 5.27, а, б):

$$M_{x_{n}} = M_{n} \frac{x}{S_{n}} + M_{n-1} \frac{S_{n} - x_{n}}{S_{n}},$$

$$M_{x_{n+1}} = M_{n+1} \frac{x_{n+1}}{S_{n+1}} + \frac{S_{n+1} - x_{n+1}}{S_{n+1}} M_{n}.$$
(5.41)

Рис. 5.27. К записи выражений для изгибающих моментов и поперечных сил в сечениях X_n и X_{n+1}

Запишем выражения для поперечных сил, используя дифференциальную зависимость между моментом и поперечной силой:

$$Q_{x_n} = \frac{dM_{x_n}}{dx} = \frac{M_n}{S_n} - \frac{M_{n-1}}{S_n},$$
(5.42)

$$Q_{X_{n+1}} = \frac{dM_{X_{n+1}}}{dx} = \frac{M_{n+1}}{S_{n+1}} - \frac{M_n}{S_{n+1}}.$$

Разрежем балку двумя вертикальными сечениями справа и слева от точки n (рис. 5.26, а). К торцам выделенной части приложим силы Q_n и Q_{n+1} (рис. 5.28).

Рис. 5.28. Равновесие выделенного бесконечно малого элемента около точки *п* (изгибающие моменты условно не показаны)

Спроектируем все силы, действующие на выделенный элемент, на вертикальную ось:

$$\sum Y = 0$$
, $F_n = Q_n - Q_{n+1}$. (5.43)

Подставив в эту формулу значения Q_n и Q_{n+1} , выраженные через моменты (5.42), получим

$$F_n = -M_{n-1}\frac{1}{S_n} + M_n \left(\frac{1}{S_n} + \frac{1}{S_{n+1}}\right) - M_{n+1}\frac{1}{S_{n+1}}.$$
 (5.44)

Если при помощи последней формулы вычислить все действующие на балку грузы F_n , то построенная эпюра изгибающих моментов будет точно соответствовать заданной (рис. 5.26, б). Заменим на основании внешнего сходства линии прогибов (рис. 5.26, в) и эпюры M (рис. 5.26, б) в выражении (5.44) величины M_{n-1} , M_n , M_{n+1} соответственно перемещениями Y_{n-1} , Y_n , Y_{n+1} :

$$U_n = -Y_{n-1}\frac{1}{S_n} + Y_n \left(\frac{1}{S_n} + \frac{1}{S_{n+1}}\right) - Y_{n+1}\frac{1}{S_{n+1}}.$$
 (5.45)

В результате получили формулу для определения фиктивных грузов U_n , эпюра моментов от которых, отнесенная к некоторой условной балке, дает ординаты прогибов действительного сооружения, которые мы и разыскиваем.

Пользоваться формулой (5.45) в этом виде практически не имеет смысла, так как величины фиктивных грузов сами зависят от перемещения сооружения. Поступим следующим образом. Рассмотрим два состояния балки (рис. 5.29, а, б).

Рис. 5.29. К выводу универсальной формулы фиктивного груза

Составим выражение работы внешних сил второго состояния (рис. 5.29, б) на перемещениях (5.29, в), вызванных силами первого состояния (рис. 5.29, а), и выразим эту работу через внутренние силы:

$$-\frac{1}{S_{n}}Y_{n-1} + \left(\frac{1}{S_{n}} + \frac{1}{S_{n+1}}\right)Y_{n} - \frac{1}{S_{n+1}}Y_{n+1} = \sum \int \frac{\overline{N}N_{F}}{EA}ds + \sum \int \frac{\overline{M}M_{F}}{EJ}ds + \sum \int \frac{\mu \overline{Q}Q_{F}}{GA}ds.$$
(5.46)

Сравнивая с (5.45), видим, что левая часть формулы (5.46) равна фиктивному грузу U_n . С учетом этого запишем формулу (5.46) так:

$$U_n = \sum \int \frac{\overline{N}N_F}{EA} ds + \sum \int \frac{\overline{M}M_F}{EJ} ds + \sum \int \frac{\mu \overline{Q}Q_F}{GA} ds.$$
(5.47)

Формула (5.47) называется универсальной формулой фиктивного груза. Здесь \overline{N} , \overline{M} , \overline{Q} – выражения внутренних усилий как функции координаты S произвольного сечения от единичных пар $\frac{1}{S_n}S_n$ и $\frac{1}{S_{n+1}}S_{n+1}$, приложенных в точке n сооружения; N_F , M_F , Q_F – выражения внутренних сил как функции координаты S от заданной внешней нагрузки (далее см. п. 5.5).

Для вычисления фиктивных грузов необходимо в различных точках сооружения приложить единичные пары, построить от них единичные эпюры, затем построить эпюру моментов от заданной нагрузки и произвести вычисления по (5.47). Интегралы, входящие в формулу (5.47), вычисляются по правилу Верещагина (см. формулу (5.27) и табл. 5.1).

При определении деформаций в балках и рамах формула (5.47) упрощается, приобретая вид одночленной:

$$U_n = \sum \int \frac{\overline{M}M_F}{EJ} ds.$$
 (5.48)

139

Для пологих арок следует учитывать и продольную силу:

$$U_n = \sum \int \frac{\overline{M}M_F}{EJ} ds + \sum \int \frac{\overline{N}N_F}{EA} ds.$$
 (5.49)

Влияние поперечных сил учитывается только в исключительных случаях.

Для ферм формула (5.47) приобретает следующий вид:

$$U_n = \sum \int \frac{\overline{N}N_F}{EA} ds = \sum_{i=1}^{j} \frac{\overline{N}_i N_{F,i} \ell_i}{(EA)_i}, \qquad (5.50)$$

где \overline{N}_i – продольное усилие в *i*-м стержне фермы, вызванное единичными парами; N_{Fi} – усилие в *i*-м стержне от внешней нагрузки; ℓ_i – длина *i*-го стержня, *j* – число стержней фермы.

5.9.1. Развернутая формула фиктивных грузов, учитывающая влияние изгибающих моментов и продольных сил

Выделим из сплошной системы два смежных участка, сходящихся в точке n. Будем предполагать, что эпюра M_F построена (рис. 5.30, а).

Рис. 5.30. К выводу развернутой формулы

Приложим к системе две единичные пары с вертикальными составляющими $\frac{1}{S_n}$ и $\frac{1}{S_{n+1}}$ и построим от них единичные эпюры (рис. 5.30, б). Теперь вычислим интегралы, входящие в формулу (5.47), способом Верещагина:

$$\sum \int \frac{\overline{M}M_{F}}{EJ} ds = \frac{1}{EJ_{n}} \left[\frac{1}{2} \cdot 1 \cdot \ell_{n} \left(\frac{2}{3}M_{n} + \frac{1}{3}M_{n-1} \right) \right] + \frac{1}{EJ_{n+1}} \left[\frac{1}{2}\ell_{n+1} \left(\frac{2}{3}M_{n} + \frac{1}{3}M_{n+1} \right) \right];$$
$$\int \sum \frac{\overline{N}N_{F}}{EA} ds = -\frac{1}{S_{n}} \sin\beta_{n} \cdot \ell_{n} \frac{N_{F,n}}{EA_{n}} + \frac{1}{S_{n+1}} \sin\beta_{n+1} \cdot \ell_{n+1} \frac{N_{F,n+1}}{EA_{n+1}}.$$

Учитывая, что $S_n = \ell_n \cos \beta_n$ и $S_{n+1} = \ell_{n+1} \cos \beta_{n+1}$, получим

$$U_{n} = \frac{S_{n}}{6EJ_{n}} (M_{n-1} + 2M_{n}) + \frac{S_{n+1}}{6EJ_{n+1}} (M_{n+1} + 2M_{n}) - \frac{N_{F,n} tg \beta_{n}}{EA_{n}} + \frac{N_{F,n+1} tg \beta_{n+1}}{EA_{n+1}}, \qquad (5.51)$$

где $N_{F,n}$, $N_{F,n+1}$ – продольные силы соответственно на участках n и n+1.

Определение фиктивных грузов при помощи полученной развернутой формулы (5.51) требует меньшей затраты времени, нежели вычисление их по общей формуле (5.49), так как не требуется прикладывать составляющих единичных пар, строить от них эпюры и При вычислении фиктивных производить перемножения. грузов необходимо учитывать знаки моментов M_n , M_{n+1} , M_{n-1} и знаки продольных сил N_{F,n}и N_{F,n+1}. Если при этом окажется, что вычисленный по (5.51) фиктивный груз имеет положительное значение, то его следует направлять вниз (в сторону действия средних составляющих единичных пар (рис. 5.30, б)).

5.9.2. Построение фиктивной балки

Пусть задана балка с произвольной нагрузкой. Дифференциальное уравнение изогнутой оси этой балки, как известно, имеет следующий вид:

$$\frac{d^2(EJy)}{dx^2} = M_x, \qquad (5.52)$$

где EJ – жесткость балки; Y – прогиб балки, т.е. вертикальное перемещение оси; M_x – изгибающий момент в сечении балки. Начало координат поместим на левом конце балки. Ось Y направим вверх. Тогда прогиб балки, совпадающий с осью Y, будет направлен вверх.

Теперь представим себе фиктивную балку с пока неизвестной фиктивной нагрузкой q_{ϕ} . Связь между моментом и нагрузкой в фиктивной балке будет такой:

$$\frac{d^2 M_{\phi}}{dx^2} = q_{\phi}.$$
(5.53)

Принимаем $q_{\phi} = M_x$, тогда

$$\frac{d^2(EJy)}{dx^2} = \frac{d^2M_x}{dx^2}.$$
(5.54)

Интегрируем обе стороны уравнения (5.54), при этом добиваемся того, чтобы произвольные постоянные левой и правой частей были равны. Тогда

$$\frac{d(EJy)}{dx} = \frac{dM_{\phi}}{dx}, \quad EJy = M_{\phi}, \quad (5.55)$$

откуда

$$y = \frac{M_{\phi}}{EJ}, \quad \varphi = \frac{Q_{\phi}}{EJ}.$$
 (5.56)

Таким образом, получили связь между фиктивной (условной) балкой и действительным сооружением. В табл. 5.3 приведены схемы действительных и фиктивных балок.

Таблица 5.3

Действительные и фиктивные балки

5.9.3. Примеры определения перемещений при помощи фиктивных грузов

Рассмотрим вначале консольную балку постоянной жесткости (EJ = consb, 3aгруженную на конце сосредоточенной силой*F* $(рис. 5.31, а). Разбиваем пролет балки на два равных участка с длиной <math>S = \ell/2$. Строим эпюру моментов M_F (рис. 5.31, б). Вычисляем фиктивные грузы по формуле (5.51). Так как продольные силы в сечении балки равны нулю, то третий и четвертый члены формулы (5.51) принимаем равными нулю. Находим фиктивные грузы в намеченных точках 0, 1, 2:

$$W_0 = -\frac{\ell}{12EJ} \left(\frac{F\ell}{2} + 2F\ell \right) = -\frac{5F\ell^2}{24EJ},$$
$$W_1 = -\frac{\ell}{12EJ} \left(F\ell + 2\frac{F\ell}{2} \right) - \frac{\ell}{12EJ} \left(0 + 2\frac{F\ell}{2} \right) = -\frac{F\ell^2}{4EJ}.$$

Рис. 5.31. Построение эпюры прогибов консольной балки

Фиктивный груз в точке "2" не определяем, так как в фиктивной балке в этой точке будет защемление (см. табл. 5.3 пункт 2). Фиктивные грузы отрицательные (изгибающие моменты в точках 0, 1 – отрицательны), поэтому в фиктивной балке (рис. 5.31, в) направляем их вверх. Построенная от этих грузов эпюра моментов и будет линией прогибов заданной балки. Прогибы в точках 1 и 2 имеют точное значение, между точками 1 и 2 – приближенное. Чтобы получить более точную эпюру прогибов, нужно разбить балку на большее количество участков.

В качестве второго примера рассмотрим ферму (рис. 5.32, а). Будем предполагать, что *EA* = *const*, т. е. сечения всех стержней одинаковы.

Ферма нагружена в узле 3 силой F = 1 кН. Усилия от внешней нагрузки и от единичных пар (рис. 5.32, б, в) приведены в табл. 5.4.

Рис. 5.32. Построение эпюры вертикальных перемещений узлов грузового пояса фермы с учетом деформаций опорных стоек

Фиктивные грузы определяем по формуле (5.50). Перемещения опорных стоек 1-6 и 5-10 равны

$$\Delta \ell_{1-6} = \Delta \ell_{5-10} = \frac{N_{F,1-6}\ell_{1-6}}{EA} = \frac{N_{F,5-10}\ell_{5-10}}{EA} = \frac{1,5}{EA}.$$

Таблица 5.4

NoNo	l _i ,	N _{Fi} ,	Усилия от единичных пар			
стер-			Узел 7		Узел 8	
жней	M	КП	\overline{N}_i	$\underline{\overline{N}_i N_{Fi} \ell_i (EA)_i}$	\overline{N}_i	$\underline{\overline{N}_i N_{Fi} \ell_i (EA)_i}$
1-6	3	0,5	0	0	0	0
1-2	6,185	0	0	0	0	0
6-7	6	0,667	-0,222	-0,889	0	0
6-2	7,5	-0,833	0,278	-1,737	0	0
7-2	4,5	0,333	-0,111	-0,166	0	0
7-3	8,485	0,471	-0,314	1,255	0,236	-0,946
7-8	6,0	1,0	0	0	-0,167	-1,0
2-3	6,185	-0,687	0,229	-0,973	0	0
8-9	6,0	1,0	0	0	-0,167	-1,0
8-3	6,0	0	0,167	0	-0,333	0
3-9	8,485	-0,471	0	0	0,236	-0,943
3-4	6,185	-0,687	0	0	0	0
9-10	6	0,667	0	0	0	0
9-4	4,5	0,333	0	0	0	0
4-5	6,185	0	0	0	0	0
4-10	7,7	-0,833	0	0	0	0
10-5	3	0,5	0	0	0	0
				$\sum = -\frac{2,51}{EA}$		$\sum = -\frac{3,386}{EA}$

Определение фиктивных грузов

Найденные фиктивные грузы прикладываем к узлам 7, 8, 9 фермы, а в узлах 6 и 10 – опорные моменты в соответствии с (5.56). Строим эпюру моментов в условной шарнирно-опертой балке (рис. 5.32, г). Эта эпюра и будет эпюрой прогибов верхнего пояса фермы.

РАЗДЕЛ 6

МЕТОДЫ РАСЧЕТА СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ

Одновременно с расчетом статически определимых конструкций развивались методы расчета статически неопределимых систем. В 1857 г. Б. Клапейрон^{*} предложил уравнение трех моментов для расчета неразрезных балок. В 1864 г. Дж. Максвеллом** и в 1874 г. О. Мором*** была найдена формула для определения перемещений в упругих системах по заданным внутренним силам (см. п. 5.4), которая оказалась очень удобной для расчета сложных статически неопределимых систем. К 30-м г. XX в. расчет упругих статически неопределимых систем достиг совершенной формы. Выявилось три основных метода расчетов: метод сил, метод перемещений, смешанный метод. В результате появилась возможность отказаться от поэлементного расчета зданий и сооружений и перейти к расчету, в котором система рассматривалась как единое целое. Это позволило создавать более прочные, надежные и долговечные конструкции и сулило получить значительный экономический эффект. Однако для реализации этой возможности в полной мере нужны были мощные вычислительные средства, в результате чего появилась необходимость автоматизации расчетов и максимального упрощения исходных данных. С этой точки зрения, один из излагаемых в данном разделе методов явился наиболее плодотворным. Это метод перемещений. Однако нельзя считать потерявшим свое значение другой классический метод – метод сил.

6.1. Метод сил

Статически неопределимой стержневой системой мы называем (п. 1.5) такую систему, у которой при действии произвольной нагрузки, температуры, смещения опорных или других связей не все продольные, поперечные силы и моменты могут быть найдены из уравнений равновесия твердого тела или системы твердых тел.

Будем считать, что система имеет лишние связи, если из нее можно удалить их наибольшее количество, не нарушая этим ее свойства геометрической неизменяемости и неподвижности. Наличие или отсутствие лишних связей характеризует систему с кинематической точки зрения (п. 1.5). Одновременно оно характеризует ее и в статическом отношении. Наличие лишних связей является необходимым и достаточным признаком статической неопределимости. Статически неопределимая система может рассматриваться как усложненное сооружение, которое образовалось из статиче-

^{*} Б. Клапейрон (1799-1864) – выдающийся французский инженер. Работал с 1820 по 1831 г. в Петербургском институте путей сообщения.

^{**} Максвелл Джеймс (1831-1879) – английский физик.

^{***} О. Мор – выдающийся немецкий ученый, вторично открывший формулу для определения перемещений стержневых систем.

ски определимого путем добавления связей. Количество лишних связей в дальнейшем будем называть степенью статической неопределимости системы.

Характерная особенность рассматриваемого метода состоит в том, что в нем весь ход расчета зависит от количества лишних связей заданной системы.

6.1.1. Определение степени статической неопределимости

Формулы для определения количества лишних связей плоских рам получены в п. 1.5.1 (формулы (1.3), (1.4)):

$$\Pi = C_0 + 2III - 3D;$$

$$\Pi = 3K - III.$$

Определим степень статической неопределимости рамы, показанной на рис. 6.1, используя два подхода.

Рис. 6.1. Расчетная схема статически неопределимой рамы

Исходя из понятия замкнутого контура, изложенного в п. 1.5.1, число лишних связей по формуле (1.4) равно

$$\Pi = 3K - III = 3 \cdot 4 - 9 = 3.$$

Здесь, кроме двух контуров самой рамы, учитываем два контура, которые образуют шарнирно-неподвижные опоры. В каждой шарнирнонеподвижной опоре насчитывается по четыре шарнира (средний шарнир – двойной, так как он соединяет три диска – стержень рамы и два опорных стержня). Еще один одиночный шарнир расположен в конце участка II (рис. 6.1) рамы. Таким образом, всего шарниров $2 \cdot 4 + 1 = 9$. По формуле (1.3), носящей название формулы Чебышева^{*}, число лишних связей определяется так:

$$JI = C_0 + 2III - 3D = 7 + 2 \cdot 1 - 3 \cdot 2 = 3.$$

Рама (рис. 6.1) состоит из двух дисков (I - II и III - VI). Эти диски соединяются между собой одним шарниром (III = 1). Наконец, рама прикреплена к опорному диску при помощи семи опорных связей ($C_0 = 7$, крайние опоры имеют четыре связи, средняя – три).

6.1.2. Основная система и основные неизвестные

Расчет статически неопределимой системы по методу сил начинается с выбора так называемой основной системы. Основная система получается из заданной при помощи удаления того или иного количества лишних связей. На практике в большинстве случаев отбрасываются все лишние связи, так что при этом основная система получается статически определимой. Необходимо обратить внимание на расположение отбрасываемых связей, для того чтобы не получилась система, обладающая в той или иной части или в целом геометрической изменяемостью. Кроме того, при выборе основной системы исходят из следующих соображений: эпюры изгибающих моментов (единичные и грузовые), построенные в основной системе, должны иметь как можно больше участков с нулевыми ординатами; количество вычислений, связанных с определением коэффициентов и свободных членов системы канонических уравнений (об этих уравнениях речь пойдет ниже), должно быть минимальным; система канонических уравнений в идеале должна распадаться на независимые друг от друга уравнения. Покажем три возможных варианта основной системы (рис. 6.2) для заданной рамы (рис. 6.1). Так как рама трижды статически неопределима, отбрасываем каждый раз по три связи с заменой их усилиями, возникающими в этих связях в заданной системе. В схеме, показанной на рис. 6.2, а, отброшены горизонтальные опорные связи и заменены неизвестными пока реакциями в них X₁ и X₃. Кроме того, вставлен шарнир между средней стойкой и правым ригелем, т. е. отброшены связи, препятствующие взаимному их повороту (реакция X_2). В схеме, представленной на рис. 6.2, б, отброшена заделка, т. е. три связи, которые заменены реакциями X_1, X_2, X_3 . Получена, таким образом, трехшарнирная рама. В схеме, изображенной на рис. 6.2, в, отброшена вертикальная связь в левой опоре (реакция этой связи – X_1), а также – полностью правая опора (реакции X_2 и X_3).

^{*} Чебышев П.Л. (1821-1894) – русский математик и механик, академик Петербургской академии наук.

Построим для рассматриваемых вариантов основной системы единичные и грузовые эпюры (рис. 6.3 – 6.5), для определенности задавшись размерами рамы и нагрузкой (рис. 6.1).

a)

Рис. 6.5. Единичные и грузовая эпюры для варианта основной системы, показанной на рис. 6.2, в

Анализ эпюр (рис. 6.3, 6.4, 6.5) показывает, что рациональной будет основная система, представленная на рис. 6.2, а. Здесь удовлетворяется большинство из перечисленных выше требований. Соответственно системы, показанные на рис. 6.2, б и 6.2, в, исходя из тех же соображений, не рациональны.

6.1.3. Система канонических уравнений

Условия эквивалентности основной (рис. 6.2) и заданной (рис. 6.1) систем записываются в виде системы канонических уравнений. Каждое уравнение представляет собой математическую запись того факта, что перемещение по направлению отброшенной связи, вызванное неизвестными реакциями и внешней нагрузкой, равно нулю. Запишем систему уравнений для *n* неизвестных ($X_1, X_2, ..., X_n$):

$$X_{1}\delta_{11} + X_{2}\delta_{12} + \dots + X_{n}\delta_{1n} + \Delta_{1F} = 0;$$

$$X_{1}\delta_{21} + X_{2}\delta_{22} + \dots + X_{n}\delta_{2n} + \Delta_{2F} = 0;$$
(6.1)

$$X_1\delta_{n1} + X_2\delta_{n2} + \ldots + X_n\delta_{nn} + \Delta_{nF} = 0.$$

В матричной форме система (6.1) записывается так:

$$A\vec{X} = -\vec{H} \quad , \tag{6.2}$$

где А – матрица податливости,

$$\mathbf{A} = \begin{bmatrix} \mathbf{s}_{11} & \mathbf{s}_{12} & \dots & \mathbf{s}_{1n} \\ \mathbf{s}_{21} & \mathbf{s}_{22} & \dots & \mathbf{s}_{2n} \\ \mathbf{s}_{n1} & \mathbf{s}_{n2} & \dots & \mathbf{s}_{nn} \end{bmatrix}, \quad \mathbf{\bar{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{bmatrix}, \quad \mathbf{\bar{\mu}} = \begin{bmatrix} \mathbf{a}_1 \mathbf{\mu} \\ \mathbf{a}_2 \mathbf{\mu} \\ \vdots \\ \mathbf{a}_{nn} \end{bmatrix}, \quad (6.3)$$

Число уравнений (6.1) равно числу неизвестных. В связи с этим матрица A системы уравнений (6.2) всегда квадратная. Элементы матрицы A– перемещения в основной системе по направлению отброшенных связей, вызванные реакциями связей, равными единицам ($X_1 = 1, X_2 = 1, ..., X_n = 1$). Элементы матрицы-столбца \vec{H} (свободные члены уравнений (6.1)) представляют собой перемещения в основной системе по направлению реакций отброшенных связей, вызванные внешней нагрузкой.

6.1.4. Определение коэффициентов и свободных членов и проверка правильности их определения

Коэффициенты и свободные члены системы уравнений (6.1) при учете изгибающих моментов, продольных и поперечных сил могут быть найдены по формуле (5.22). Для сооружений, работающих преимущественно на изгиб, формула приобретает одночленный вид (5.25).

Используя эту формулу, запишем

$$\delta_{ik} = \sum \int \frac{M_i M_k}{EJ} \mathrm{d}s; \qquad (6.4)$$

$$\Delta_{iF} = \sum \int \frac{M_i M_F}{EJ} \mathrm{d}s; \qquad (6.5)$$

$$i = 1, 2, \dots, n, k = 1, 2, \dots, n$$

Интегралы, входящие в эти формулы, могут быть вычислены по правилу Верещагина «перемножения» эпюр (см. формулу (5.27)).

Итак, чтобы найти любой коэффициент системы уравнений (6.1), необходимо в основной системе метода сил построить эпюры от единичных реакций $X_i = 1$ и $X_k = 1$ и их «перемножить».

Продемонстрируем это на примере (см. рис. 6.1 и 6.3):

$$\begin{split} \delta_{11} &= \sum \int \frac{M_1^2}{EJ} \, \mathrm{d} s = \frac{1}{EJ} \left[\frac{1}{2} 6 \cdot 6\frac{2}{3} 6 + \frac{1}{2} \cdot \frac{1}{2} 6 \sqrt{153} \frac{2}{3} 6 + \frac{2}{3} \cdot \frac{1}{2} 9 \cdot 9\frac{2}{3} 9 \right] = \frac{308,22}{EJ} ; \\ \delta_{12} &= \delta_{21} = \sum \int \frac{M_1 M_2}{EJ} \, \mathrm{d} s = -\frac{1}{EJ} \left[\frac{2}{3} \cdot \frac{1}{2} 9 \cdot 9 \cdot 1 \right] = -\frac{27}{EJ} ; \\ \delta_{13} &= \delta_{31} = \sum \int \frac{M_1 M_3}{EJ} \, \mathrm{d} s = -\frac{1}{EJ} \left[\frac{2}{3} \cdot \frac{1}{2} 9 \cdot 9 \cdot \frac{2}{3} 9 \right] = -\frac{162}{EJ} ; \\ \delta_{22} &= \sum \int \frac{M_2^2}{EJ} \, \mathrm{d} s = \frac{1}{EJ} \left[\frac{2}{3} \cdot 1 \cdot 9 \cdot 1 + \frac{1}{3} \cdot \frac{1}{2} \cdot 1 \cdot 9\frac{2}{3} \cdot 1 \right] = \frac{7}{EJ} ; \\ \delta_{23} &= \delta_{32} = \sum \int \frac{M_2 M_3}{EJ} \, \mathrm{d} s = \frac{1}{EJ} \left[\frac{2}{3} \cdot \frac{1}{2} \cdot 9 \cdot 9 \cdot 1 - \frac{1}{3} \cdot \frac{1}{2} \cdot 1 \cdot 9\frac{1}{3} \cdot 9 \right] = \frac{22,5}{EJ} ; \\ \delta_{33} &= \sum \int \frac{M_2^3}{EJ} \, \mathrm{d} s = \frac{1}{EJ} \left[\frac{2}{3} \cdot \frac{1}{2} 9 \cdot 9\frac{2}{3} 9 + \frac{1}{3} \cdot \frac{1}{2} 9 \cdot 9\frac{2}{3} 9 \right] = \frac{364,5}{EJ} ; \\ \delta_{1F} &= \sum \int \frac{M_1 M_F}{EJ} \, \mathrm{d} s = -\frac{1}{EJ} \left[\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{30 \cdot 144}{8} \sqrt{153} \cdot 3 \right] = -\frac{6679,43}{EJ} ; \\ \Delta_{2F} &= \sum \int \frac{M_2 M_F}{EJ} \, \mathrm{d} s = -\frac{1}{EJ} \left[\frac{1}{3} \cdot \frac{1}{2} \cdot 345, 6 \cdot 3, 6 \cdot \frac{2}{3} \cdot 0, 4 + \frac{1}{3} \cdot \frac{1}{2} \cdot 345, 6 \cdot 5, 4 \left(\frac{2}{3} \cdot 0, 4 + \frac{1}{3} \cdot 1 \right) \right] = \frac{241,92}{EJ} ; \\ \Delta_{3F} &= \sum \int \frac{M_3 M_F}{EJ} \, \mathrm{d} s = -\frac{1}{EJ} \left[\frac{1}{3} \cdot \frac{1}{2} \cdot 345, 6 \cdot 3, 6 \left(\frac{2}{3} \cdot 5, 4 + \frac{1}{3} \cdot 9 \right) + \frac{1}{3} \cdot \frac{1}{2} \cdot 345, 6 \cdot 5, 4 \cdot \frac{2}{3} 5, 4 \right] = -\frac{2488,322}{EJ} . \end{split}$$

6.1.4.1. Проверка правильности вычисления коэффициентов и свободных членов

Загрузим основную систему одновременно всеми лишними неизвестными и построим от них в основной системе эпюру изгибающих моментов. Например, для рамы, показанной на рис. 6.2, а, получим эпюру на рис. 6.6.

Рис. 6.6. Суммарная эпюра моментов

Такая эпюра называется суммарной единичной эпюрой. Очевидно, для каждого сечения рассчитываемой конструкции

$$M_{s} = M_{1} + M_{2} + \ldots + M_{n}. \tag{6.6}$$

Умножим суммарную эпюру M_s поочередно на каждую из единичных эпюр:

$$\sum_{i=1}^{n} \delta_{1i} = \delta_{11} + \delta_{12} + \dots + \delta_{1n} = \sum \int \frac{M_1^2}{EJ} ds + \sum \int \frac{M_1 M_2}{EJ} ds + \dots + \sum \int \frac{M_1 M_n}{EJ} ds =$$
$$= \sum \int M_1 (M_1 + M_2 + \dots + M_n) \frac{ds}{EJ} = \sum \int \frac{M_1 M_s}{EJ} ds = \delta_{1s}.$$
(6.7)

Аналогично

Следовательно, сумма коэффициентов при неизвестных *i* -го уравнения должна равняться значению

$$\delta_{is} = \sum \int \frac{M_i M_s}{EJ} \mathrm{d}s.$$
(6.9)

Таким образом, проверка вычисленных значений единичных перемещений, входящих в i -е каноническое уравнение, состоит в сопоставлении их суммы с величиной δ_{is} . Такая проверка носит название построчной.

Возьмем сумму слагаемых $\delta_{15}, \delta_{25}, ..., \delta_{n5}$ и обозначим ее через $\sum \delta$:

$$\sum \delta = \sum \int \boldsymbol{M}_{s} (\boldsymbol{M}_{1} + \boldsymbol{M}_{2} + \ldots + \boldsymbol{M}_{n}) \frac{\mathrm{d}\boldsymbol{s}}{\boldsymbol{E}\boldsymbol{J}} = \sum \int \frac{\boldsymbol{M}_{s} \boldsymbol{M}_{s}}{\boldsymbol{E}\boldsymbol{J}} \mathrm{d}\boldsymbol{s} = \delta_{ss}.$$
(6.10)

Проверка коэффициентов при помощи последней формулы носит название универсальной и состоит в следующем: алгебраическим сложением определяется сумма всех найденных коэффициентов (единичных перемещений), входящих в систему канонических уравнений. Затем вычисляется интеграл

$$\delta_{ss} = \sum \int \frac{M_s^2}{EJ} \mathrm{d}s$$

и проверяется условие (6.10).

Покажем это на примере (рис. 6.6):

$$\delta_{ss} = \sum \int \frac{M_s^2}{EJ} ds = \frac{1}{EJ} \left[\frac{1}{2} 6 \cdot 6\frac{2}{3} \cdot 6 + \frac{1}{2} \cdot \frac{1}{2} 6\sqrt{153}\frac{2}{3}6 + \frac{2}{3} \cdot 1 \cdot 9 \cdot 1 + \frac{1}{2} \cdot \frac{1}{3} \cdot 1 \cdot 9 \left(\frac{2}{3} \cdot 1 - \frac{1}{3} \cdot 9\right) + \frac{1}{3} \cdot \frac{1}{2} 9 \cdot 9 \left(\frac{2}{3} \cdot 9 - \frac{1}{3} \cdot 1\right) + \frac{1}{2} \cdot \frac{1}{2} 9 \cdot 9\frac{2}{3} 9 = \frac{346,72}{EJ} \cdot \frac{1}{2} \cdot \frac$$

Теперь вычисляем

$$\sum \delta = \delta_{11} + \delta_{22} + \delta_{33} + 2\delta_{12} + 2\delta_{13} + 2\delta_{23} =$$
$$= \frac{1}{EJ} [308,22 + 7 + 364,5 - 2 \cdot 27 - 2 \cdot 162 + 2 \cdot 22,5] = \frac{346,72}{EJ}$$

Сравнивая эти результаты, видим, что равенство соблюдается. Следовательно, коэффициенты системы уравнений (6.1) найдены правильно. В случае отличия результатов для поиска ошибки рекомендуется произвести построчные проверки (6.9).

Для грузовых коэффициентов проверка сводится к следующему. Вычисляется значение

$$\Delta_{SF} = \sum \int \frac{M_{S}M_{F}}{EJ} \mathrm{d}S, \qquad (6.11)$$

где M_F – изгибающие моменты от заданной нагрузки в основной системе (рис. 6.3, г, 6.4, г, 6.5, г).

Далее проверяется условие

$$\sum \Delta = \Delta_{1F} + \Delta_{2F} + \ldots + \Delta_{nF} = \Delta_{sF} .$$
(6.12)

Выполним такую проверку на примере (рис. 6.3, г и 6.6):

$$\Delta_{SF} = \sum \int \frac{M_s M_F}{EJ} dS = \frac{1}{EJ} \left[\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{30 \cdot 144}{8} \sqrt{153} \cdot 3 - \frac{1}{3} \cdot \frac{1}{2} 345, 6 \cdot 3, 6 \left(\frac{2}{3} \cdot 5 + \frac{1}{3} \cdot 9 \right) + \frac{1}{3} \cdot \frac{1}{2} 345, 6 \cdot 5, 4 \left(-\frac{2}{3} \cdot 5 + \frac{1}{3} \cdot 1 \right) \right] = -\frac{8925, 83}{EJ}$$

Вычисляем (6.12)

$$\Delta_{1F} + \Delta_{2F} + \Delta_{3F} = -(6679,43 - 241,92 + 2488,32) = -\frac{8925,83}{EJ}$$

Сравнивая результаты, видим, что они совпадают. Следовательно, свободные члены системы канонических уравнений (6.1) найдены правильно.

6.1.5. Решение системы канонических уравнений

Для решения системы линейных уравнений метода сил можно применять различные методы (метод исключения Гаусса, схему Жордана, метод квадратного корня и др.). Так как матрица A (6.3) коэффициентов этих уравнений симметрична, эффективным здесь будет метод квадратного корня. Покажем применение этого метода для системы из трех уравнений. В этом методе матрица коэффициентов A преобразуется к двум треугольным матрицам:

$$\begin{bmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ 0 & \alpha_{22} & \alpha_{23} \\ 0 & 0 & \alpha_{33} \end{bmatrix}, \quad (6.13)$$

где

$$\alpha_{11} = \sqrt{\delta_{11}}; \quad \alpha_{12} = \alpha_{21} = \frac{\delta_{12}}{\sqrt{\delta_{11}}}; \quad \alpha_{13} = \alpha_{31} = \frac{\delta_{13}}{\sqrt{\delta_{11}}};$$
$$\alpha_{22} = \sqrt{\delta_{22} - \alpha_{12}^2}; \quad \alpha_{23} = \alpha_{32} = \frac{\delta_{23} - \alpha_{12}\alpha_{13}}{\alpha_{22}}; \quad \alpha_{33} = \sqrt{\delta_{33} - \alpha_{13}^2 - \alpha_{23}^2}$$

Теперь решаем вспомогательную систему
$$\alpha_{11}y_1 = -\Delta_{1F}$$
.

$$\alpha_{21}y_1 + \alpha_{22}y_2 = -\Delta_{2F};$$

$$\alpha_{31}y_1 + \alpha_{32}y_2 + \alpha_{33}y_3 = -\Delta_{3F}$$
(6.14)

и находим y_1, y_2, y_3 .

Затем найдем X₁, X₂, X₃ из следующей системы уравнений:

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ 0 & \alpha_{22} & \alpha_{23} \\ 0 & 0 & \alpha_{33} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}.$$
 (6.15)

Для рассматриваемого в этом пункте примера (рис. 6.1) получаем следующие значения вспомогательных и основных неизвестных:

$$y_1 = 380,464; \quad y_2 = 159,421; \quad y_3 = 331,091;$$

 $X_1 = 35,66 \text{ kH}; \quad X_2 = 37,56 \text{ kH} \cdot \text{m}; \quad X_3 = 20,36 \text{ kH}.$

Если система уравнений (6.15), а равно и (6.1), решена правильно, то должно выполняться следующее условие:

$$X_{1}\delta_{1s} + X_{2}\delta_{2s} + \dots + X_{n}\delta_{ns} + \Delta_{sF} = 0.$$
(6.16)

Проверим это условие для системы канонических уравнений с тремя неизвестными:

$$35,66(308,22 - 27 - 162) + 37,56(-27 + 7 + 22,5) +$$
$$+ 20,36(-162 + 22,5 + 364,5) + (-6679,43 + 241,92 - 2488,32) = 0,45.$$

Ошибка составляет 5,04 · 10⁻³ %.

6.1.6. Построение эпюр *M* , *Q* , *N* в заданной статически неопределимой системе и их проверки

Построение эпюры моментов производится в соответствии со следующей формулой:

$$M = M_1 X_1 + M_2 X_2 + \dots + M_n X_n + M_F.$$
(6.17)

«Исправленные» эпюры M_1X_1 , M_2X_2 , M_3X_3 и окончательная эпюра для рассматриваемого примера показаны на рис. 6.7. Эпюра M_F приведена на рис. 6.3, г. Ординаты эпюр вычислены на границах и в середине участков (см. рис. 6.1).

Если эпюра моментов в заданной статически неопределимой системе построена правильно, то должно выполняться следующее условие:

$$\sum \int \frac{MM_s}{EJ} \mathrm{d}s = 0. \tag{6.18}$$

Рис. 6.7. «Исправленные» эпюры (а), (б), (в) и эпюра моментов (г) в заданной статически неопределимой системе

Условие (6.18) свидетельствует о том, что сумма перемещений в заданной системе по направлению отброшенных связей, которые имеют место при образовании основной системы, равна нулю. Если в уравнение (6.18) подставить выражения для M_s (6.6) и M (6.17) и произвести простейшие преобразования, то получим условие (6.16). Следовательно, проверка (6.16) свидетельствует о правильности решения поставленной задачи в целом, а не только системы уравнений (6.1). В дальнейшем ошибка может быть допущена при построении эпюры M (6.17). Поэтому еще раз рекомендуется убедиться в выполнении условия (6.18). В нашем случае

$$\sum \int \frac{MM_s}{EJ} ds = \frac{1}{EJ} \left[\frac{1}{2} 6 \cdot 6\frac{2}{3} 213,96 + \frac{1}{2} \frac{1}{2} 6\sqrt{153}\frac{2}{3} 213,96 - \frac{1}{2} \frac{2}{3} \frac{30 \cdot 144}{8} \sqrt{153} \cdot 3 + \frac{2}{3} 1 \cdot 9 \left(\frac{1}{2} 37,56 - \frac{1}{2} 100,14 \right) + \frac{1}{3} \cdot \frac{1}{2} 183,24 \cdot 3,6 \left(\frac{2}{3} 9 + \frac{1}{3} 5 \right) - \frac{1}{3} \cdot \frac{1}{2} 250,68 \cdot 3,6 \left(\frac{2}{3} 5 + \frac{1}{3} 9 \right) + \frac{1}{3} \frac{1}{2} 250,68 \cdot 5,4 \left(-\frac{2}{3} 5 + \frac{1}{3} 1 \right) + \frac{1}{3} \frac{1}{2} 37,56 \cdot 5,4 \left(\frac{2}{3} 1 - \frac{1}{3} 5 \right) + \frac{1}{2} \frac{1}{2} 9 \cdot 9 \frac{2}{3} 183,24 \right] = \frac{0,052}{EJ}.$$

Ошибка составляет, как и ранее (см. проверку условия (6.16)), $\approx 5 \cdot 10^{-3} \%$.

Эпюру поперечных сил в статически неопределимой системе строим по эпюре моментов с использованием дифференциальной зависимости

 $\frac{\mathrm{d}M}{\mathrm{d}x}=Q,$

ИЛИ

$$Q = Q^0 + \frac{M_n - M_{n-1}}{\ell_n} . (6.19)$$

Каждый элемент рамы длиной ℓ_n (стойки, наклонный и горизонтальный ригели) рассматривается как балка на двух опорах, загруженная концевыми моментами и внешней нагрузкой (если внешняя нагрузка на элементе отсутствует, то $Q^0 = 0$). В формуле (6.19) $M_n \, {}^{\mu} \, M_{n-1}$ – соответственно правый и левый концевые моменты рассматриваемого элемента. Для вертикальных элементов (стоек) понятия «правый» и «левый» зависят от наблюдателя. В формулу (6.19) $M_n \, {}^{\mu} \, M_{n-1}$ подставляются со своими знаками.

Продемонстрируем сказанное на примере. Используя эпюру моментов (рис. 6.7, Γ) и схему заданной рамы (рис. 6.1), построим эпюру Q (рис. 6.8).

Рис. 6.8. Эпюра поперечных сил в статически неопределимой системе (a) и схемы элементов (б), (в)

Элемент 1-2 (рис. 6.8, а и 6.7, г):

a)

$$Q_1 = Q_2 = \frac{-213,96 - 0}{6} = -35,66 \,\mathrm{\kappa H}$$

Элемент 2-3 (рис. 6.8, б и 6.7, г):

$$\cos \alpha = \frac{12}{\sqrt{153}} = 0,970; \ \sin \alpha = \frac{3}{\sqrt{153}} = 0,242;$$
$$Q_2 = 174,6 + \frac{0 + 213,96}{\sqrt{153}} = 191,89 \text{ kH};$$
$$Q_3 = -174,6 + \frac{0 + 213,96}{\sqrt{153}} = -157,3 \text{ kH}.$$

Элемент 3-4 (рис. 6.8, а и 6.7, г):

$$Q_3 = Q_4 = \frac{37,56 + 100,14}{9} = 15,3 \,\mathrm{\kappa H}$$
.

Элемент 3-5 (рис. 6.8, в и 6.7, г):

$$Q_3 = 64 + \frac{-183,24 - 37,56}{9} = 39,47 \,\text{kH};$$
$$Q_5 = -96 + \frac{-183,24 - 37,56}{9} = -120,53 \,\text{kH}.$$

Элемент 5-6 (рис. 6.8, а и 6.7, г):

$$Q_5 = Q_6 = \frac{183,24 - 0}{9} = 20,36 \,\mathrm{\kappa H}$$
.

Эпюру продольных сил строим способом вырезания узлов эпюры *Q* (рис. 6.8, а и 6.9).

Рис. 6.9. Схемы узлов рамы и действующих на них усилий Узел 2 (рис. 6.9, а):

$$\sum Y_1 = 0: \quad N_{2-1} \cos \alpha + 191,89 + 35,66 \sin \alpha = 0;$$

$$N_{2-1} = \frac{-191,89 - 35,66 \cdot 0,242}{0,97} = -206,72 \,\text{kH};$$

$$\sum X = 0: \quad N_{2-3} \cos \alpha + 35,66 + 191,89 \sin \alpha = 0;$$

$$N_{2-3} = \frac{-35,66 - 191,89 \cdot 0,242}{0,97} = -84,64 \,\text{kH}.$$

Узел 5 (рис. 6.9, б):

$$\sum X = 0: \quad N_{5-3} + 20,36 = 0; \quad N_{5-3} = -20,36 \,\mathrm{\kappa H};$$

$$\sum Y = 0: \quad 120,53 + N_{5-6} = 0; \quad N_{5-6} = -120,53 \,\mathrm{\kappa H}.$$

Узел 3 (рис. 6.9, в): $\sum Y_1 = 0: \quad N_{3-4} \cos \alpha + 157,3 + 39,47 \cos \alpha - 15,3 \sin \alpha - 20,36 \sin \alpha = 0;$ $N_{3-4} = \frac{-157,3 - 39,47 \cdot 0,97 + 15,3 \cdot 0,242 + 20,36 \cdot 0,242}{0,97} = -192,74 \text{ кH};$ $\sum X = 0: \quad N_{3-2} \cos \alpha + 20,36 + 15,3 - 157,3 \sin \alpha = 0;$ $N_{3-2} = \frac{-20,36 - 15,3 + 157,3 \cdot 0,242}{0,97} = 2,48 \text{ кH}.$

Эпюра продольных сил показана на рис. 6.10.

Рис. 6.10. Эпюра продольных сил в статически неопределимой системе

Проверим правильность построения эпюр Q и N. Для этого отсекаем раму от опорных закреплений и рассматриваем ее равновесие под действием внешней нагрузки и опорных реакций (рис. 6.11). Величины и направления опорных реакций принимаем из эпюр Q (рис. 6.8, а) и N (рис. 6.10).

Рис. 6.11. Проверка условий равновесия рамы

Составляем условия равновесия:

$$\sum X = 0; \quad 35,66 - 15,3 - 20,36 = 0;$$

$$\sum Y = 0; \quad 30 \cdot 12 + 160 - 206,72 - 192,74 - 120,53 = 0,01 \approx 0.$$

6.1.7. Расчет на температурные воздействия

В этом случае канонические уравнения записываются следующим образом:

$$X_{1}\delta_{11} + X_{2}\delta_{12} + \dots + X_{n}\delta_{1n} + \Delta_{1t} = 0;$$

$$X_{1}\delta_{21} + X_{2}\delta_{22} + \dots + X_{n}\delta_{2n} + \Delta_{2t} = 0;$$
(6.20)

$$X_1\delta_{n1} + X_2\delta_{n2} + \ldots + X_n\delta_{nn} + \Delta_{nt} = 0$$

Или в матричной форме

где

$$\boldsymbol{A}\,\boldsymbol{\bar{X}} = -\boldsymbol{\bar{T}}\,, \tag{6.21}$$
$$\boldsymbol{\bar{T}} = \begin{pmatrix} \Delta_{1t} \\ \Delta_{2t} \\ \cdots \\ \Delta_{nt} \end{pmatrix}\,.$$

Отличие этой основной системы от системы (6.1) состоит в том, что вместо свободных членов $\Delta_{1F}, \Delta_{2F}, ..., \Delta_{nF}$ (см. (6.3)) здесь стоят члены $\Delta_{1t}, \Delta_{2t}, ..., \Delta_{nt}$, представляющие собой температурные перемещения в основной системе (см. п. 5.6, формула (5.29)):

$$\Delta_{it} = \sum \int N_i \alpha t ds + \sum \int \frac{M_i \alpha t'}{h} ds ; \qquad (6.22)$$
$$i = 1, 2, \dots, n.$$

Геометрический смысл систем (6.20) и (6.1) один и тот же. Обе выражают ту мысль, что суммарные перемещения по направлению отброшенных связей равны нулю.

После определения коэффициентов и свободных членов системы уравнений (6.20) производится ее решение (см. п. 6.1.5), т. е. находятся неизвестные $X_1, X_2, ..., X_n$.

Эпюра моментов от температурных воздействий строится так:

$$M_t = M_1 X_1 + M_2 X_2 + \dots + M_n X_n.$$
 (6.23)

Условие, свидетельствующее о том, что эпюра моментов построена правильно, имеет следующий вид:

$$\sum \int \frac{M_t M_s}{EJ} \mathrm{d}s + \sum \int N_s \alpha t \mathrm{d}s + \sum \int \frac{M_s \alpha t'}{h} \mathrm{d}s = 0.$$
 (6.24)

Следует обратить внимание на уравнение (6.24). Эквивалентная система метода сил находится под действием неизвестных $X_1, X_2, ..., X_n$ и температуры. Поэтому искомое перемещение определяется как сумма перемещений от силовых (первый член формулы) и температурных воздействий (второй и третий члены формулы).

Построение эпюр поперечных и продольных сил и их проверка производятся так же, как это изложено в п. 6.1.6.

Рассмотрим простейший пример (рис. 6.12, а). Для заданной рамы требуется построить эпюру моментов.

Рис. 6.12. К примеру расчета рамы на температурные воздействия

Основная система показана на рис. 6.12, б, единичные эпюры – на рис. 6.12, в, г.

Каноническое уравнение имеет следующий вид:

$$X_1 \delta_{11} + \Delta_{1t} = 0$$

Перемещение δ_{11} найдем, используя (6.4):

$$\delta_{11} = \frac{1}{EJ} \left[1 \cdot 1 \cdot 1 + \frac{1}{2} \cdot 1 \cdot 1 \cdot \frac{2}{3} \cdot 1 \right] = \frac{4}{3EJ}.$$

Для нахождения свободного члена привлекаем (5.29):

$$\Delta_{1t} = \alpha \cdot 6 \cdot 1 \cdot 1 + \frac{\alpha \cdot 8}{\frac{1}{10}} \cdot 1 \cdot 1 + \frac{\alpha \cdot 8}{\frac{1}{10}} \cdot \frac{1}{2} \cdot 1 \cdot 1 = 126\alpha$$

Из канонического уравнения находим X₁:

$$X_1 = -\frac{\Delta_{1t}}{\delta_{11}} = -\frac{126\alpha EJ \cdot 3}{4} = -\frac{189\alpha EJ}{2}.$$

Построим эпюру моментов по (6.23), см. рис. 6.13.

Рис. 6.13. Эпюра моментов от температурных воздействий

Проверим правильность построения M_t . Воспользуемся условием (6.24):

$$-\frac{1}{EJ}\left[\frac{189\alpha EJ}{2} \cdot 1 \cdot 1 + \frac{1}{2} \cdot \frac{189\alpha EJ}{2} \cdot 1 \cdot \frac{2}{3} \cdot 1\right] + 126\alpha = -126\alpha + 126\alpha = 0.$$

Эпюра моментов построена правильно. Теперь можно построить эпюры Q и N (см. п. 6.1.6).

6.1.8. Расчет на смещение опорных или других связей

Система канонических уравнений имеет следующий вид:

$$X_{1}\delta_{11} + X_{2}\delta_{12} + \dots + X_{n}\delta_{1n} + \Delta_{1c} = 0;$$

$$X_{1}\delta_{21} + X_{2}\delta_{22} + \dots + X_{n}\delta_{2n} + \Delta_{2c} = 0;$$
(6.25)

$$X_1\delta_{n1} + X_2\delta_{n2} + \ldots + X_n\delta_{nn} + \Delta_{nc} = 0$$

В матричной форме система (6.25) имеет следующий вид:

$$A\,\vec{X} = -\vec{C}\,,\tag{6.26}$$

где

Отличие этой системы от систем (6.1) и (6.20) состоит в свободных членах. Здесь Δ_{1c} , Δ_{2c} ,..., Δ_{nc} представляют собой перемещения в основной системе от смещения опорных или других связей (при выборе основной системы предполагается, что связи, которые перемещаются, не отброшены). Они, как известно (см. п. 5.7), определяются так:

$$\Delta_{ic} = -\sum R \cdot \Delta; \qquad (6.27)$$

$$i = 1, 2, \dots, n,$$

где R – реакции в перемещающихся связях, Δ – заданные перемещения связей.

Определение коэффициентов и свободных членов осуществляется с привлечением зависимостей (6.4) и (5.31). Эпюра моментов может быть построена по формуле, аналогичной (6.23):

$$M_{c} = M_{1}X_{1} + M_{2}X_{2} + \dots + M_{n}X_{n}.$$
(6.28)

Проверка правильности построенной по (6.28) эпюры моментов осуществляется по формуле

$$\sum \int \frac{M_c M_s}{EJ} \mathrm{d}s - \sum R \cdot c = 0.$$
 (6.29)

В этом условии, в отличие от (6.18), присутствует перемещение в статически определимой основной системе от заданного смещения связей. Понять смысл этого слагаемого не сложно, если вспомнить, что эквивалентная система при расчете на смещение связей загружена неизвестными $X_1, X_2, ..., X_n$ (силами) и смещением связей.

Рассмотрим, как и в предыдущем случае, пример, иллюстрирующий основные положения расчета.

Для рамы, показанной на рис. 6.14, а, построим эпюру моментов M_c . Основную систему получим из заданной путем установки полного шарнира в узел **С** (рис. 6.14, б).

Каноническое уравнение имеет вид

$$X_1\delta_{11}+\Delta_{1c}=0$$

Коэффициент δ_{11} получаем, «перемножая» эпюру M_1 (рис. 6.14, в) на себя:

$$\delta_{11} = \frac{1}{EJ} \left[1 \cdot 1 \cdot 1 + \frac{1}{2} \cdot 1 \cdot 1 \cdot \frac{2}{3} \cdot 1 \right] = \frac{4}{3EJ}.$$

Рис. 6.14. К примеру расчета рамы на смещение опорных связей

Свободный член Δ_{1c} вычисляем по формуле (5.31):

$$\Delta_{1c} = -\left(1 \cdot \frac{1}{10}\right) = -\frac{1}{10} \; .$$

Из канонического уравнения найдем

$$X_1 = -\frac{\Delta_{\rm lc}}{\delta_{11}} = \frac{3EJ}{40}.$$

Эпюра моментов в соответствии с зависимостью (6.28) показана на рис. 6.15.

Рис. 6.15. Эпюра моментов от смещения опорной связи В

Убедимся в том, что эпюра M_c (рис. 6.15) построена правильно. Для этого проверим условие (6.29):

$$\frac{1}{EJ} \left[\frac{3EJ}{40} \cdot 1 \cdot 1 + \frac{1}{2} \cdot \frac{3EJ}{40} \cdot 1 \cdot \frac{2}{3} \cdot 1 \right] - \frac{1}{10} = \frac{1}{10} - \frac{1}{10} = 0.$$

Условие (6.29) соблюдается, следовательно, эпюра моментов построена правильно.

6.2. Метод перемещений

Как известно, в статически неопределимых системах одних условий равновесия оказывается недостаточно для определения всех усилий в конструкции. Поэтому уравнения статики решаются совместно с другими уравнениями, выражающими условия деформации системы. Для упрощения расчет строится таким образом, что какие-то факторы системы выбираются в качестве основных неизвестных, т. е. все прочие величины в конструкции выражаются через них. В методе сил (см. п. 6.1) в качестве таких основных неизвестных выбираются внутренние усилия. В методе перемещений используется другой подход. За основные неизвестные примем перемещения узлов системы. Будем различать два типа расчетных схем стержневых конструкций: с растяжимыми ($EA \neq \infty$) и нерастяжимыми ($EA = \infty$) стержнями. Следует отметить, что все стержни, строго говоря, имеют конечную жесткость на растяжение-сжатие и в общем случае при нагружении изменяют свою длину. Однако во многих случаях вклад продольных и поперечных деформаций в общие величины перемещений узлов рамы очень мал по сравнению с величинами деформаций изгиба, и без существенной погрешности можно пренебречь влиянием продольных и поперечных сил на деформации стержней. Расчетная схема стержневой конструкции с растяжимыми стержнями (ЕА ≠ ∞) используется при расчете изгибаемых систем с применением ЭВМ. При использовании ЭВМ число неизвестных не столь существенно, а такие факторы, как точность решения, общность и простота являются решающими. Поэтому расчетная схема стержневой системы с нерастяжимыми стержнями рекомендуется для контроля приближенных решений и анализа правомерности принятия тех или иных допущений. А для многоэтажных рам, рам с наклонными стойками, арочных систем расчетная схема с $EA \neq \infty$ является, как показывает практика расчета и проектирования, единственно верной.

6.2.1. Определение степени кинематической неопределимости (числа неизвестных)

Общее число неизвестных независимых перемещений узлов рамы определяется по формуле

$$n = n_{\rm y} + n_{\rm \pi}, \tag{6.30}$$

где n_y – число неизвестных углов поворота системы; n_{π} – число неизвестных линейных перемещений узлов.

Значение n_y равно числу жестких узлов (опорные узлы в это число не входят). Жестким считается такой узел, в котором концы по крайней мере двух из сходящихся в нем стержней жестко связаны между собой (рис. 6.16).

Рис. 6.16. Характерные виды соединения стержней в узле: а, б – жесткие узлы; в – шарнирный узел

Может возникнуть вопрос, почему число угловых перемещений равно только числу жестких узлов. Это связано с тем, что углы поворота шарнирных узлов являются зависимыми перемещениями от углов поворота жестких узлов (см. табл. 6.1), а мы, как было отмечено выше, ищем независимые перемещения.

При определении числа линейных неизвестных смещений необходимо заменить схему данной статически неопределимой системы ее шарнирной схемой путем введения полных шарниров во все узлы и опорные закрепления. Перемещения всех узлов такой системы не являются независимыми, так как смещение одного из них может вызвать смещения ряда других узлов. Число же независимых линейных смещений узлов системы равно числу стержней, которое необходимо ввести в шарнирную схему сооружения, чтобы превратить ее в геометрически неизменяемую. Другими словами, число независимых линейных смещений узлов равно числу степеней свободы шарнирной схемы заданной рамы, т. е.

$$n_{\rm II} = \rm III - 3K, \qquad (6.31)$$

где Ш – число всех простых шарниров системы (шарнир называется простым, если он соединяет два стержня; шарнир, соединяющий i стержней, эквивалентен (i-1) простым шарнирам). Определим число неизвестных в раме, показанной на рис. 6.17.

Рис. 6.17. Схема заданной рамы (а) и ее шарнирная схема (б)

Жесткими узлами являются *B*, *C*, *D*, *E*, *M*, *K*, поэтому $n_y = 6$.

Число линейных смещений определяем по формуле (6.31):

$$n_{\rm II} = 24 - 3 \cdot 7 = 3$$
.

На рис. 6.17, б римскими цифрами I, II, III, IV, V, VI, VII обозначены замкнутые контуры рамы, а арабскими 1, 2, 3 – число простых шарниров в данном узле. Таким образом, общее число неизвестных равно

$$n = 6 + 3 = 9$$
.

из них 6 – угловых перемещений и 3 – линейных.

Число независимых линейных смещений узлов можно определить по смыслу, не прибегая к формуле (6.31). Полагая $EA = \infty$, мы тем самым исключаем линейные перемещения вследствие работы стержней на растяжение-сжатие. Следовательно, для такой расчетной схемы линейные перемещения будут определяться только изгибной деформацией стержней. Анализ, в связи со сказанным, работы схемы рассматриваемой рамы (рис. 6.17, а) показывает, что узлы *C*, *D*, *E* перемещаются по горизонтали; узлы *D* и P – по вертикали, а узлы *B*, *P*, *M*, *K* – по горизонтали. Таким образом, число независимых линейных перемещений равно 3, что соответствует найденному числу перемещений по формуле (6.31).

Если расчетная схема рамы представлена с растяжимыми элементами, то общее число неизвестных может быть найдено по формуле

$$n = 3Y_{\rm sc} + 2Y_{\rm III} - C_0, \qquad (6.32)$$

где $Y_{\rm m}$, $Y_{\rm m}$ – соответственно число жестких и шарнирных (с полными шарнирами) узлов сооружения (в эти числа входят и опорные узлы); C_0 – число опорных стержней.

Для рамы, показанной на рис. 6.17, а, число неизвестных равно

$$n = 3 \cdot 8 + 2 \cdot 2 - 8 = 20$$
.

Как и ранее, число неизвестных *n* (6.32) можно определить по смыслу, последовательно закрепляя все узлы рамы от линейных и угловых смещений. Так, узлы *B*, *C*, *D*, *E*, *M*, *K* имеют по три смещения (одно угловое и два линейных), а узел *P* – два линейных смещения, т. е. всего – 20.

Сравнение полученных результатов показывает, что допущение о нерастяжимости снизило степень кинематической неопределимости с 20 до 9. Это существенное упрощение для «ручного» счета. Далее будем рассматривать рамы с нерастяжимыми стержнями, а к расчетным схемам рам с растяжимыми элементами будем возвращаться при расчетах на ЭВМ.

6.2.2. Основная система

При расчете статически неопределимых систем методом перемещений основная система представляет собой набор однопролетных статически неопределимых стержней. Это достигается путем введения во все жесткие узлы заданной системы защемлений (заделок) и установки дополнительных стержней, препятствующих линейным смещениям узлов. Основная система заданной рамы, показанной на рис. 6.17, а, представлена на рис. 6.18, а. В заданную систему введено шесть связей (узлы *B*, *C*, *D*, *E*, *M*, *K*), препятствующих повороту узлов, и три связи (узлы *P*, *E*, *K*), препятствующие линейным перемещениям узлов. Следует отметить, что введенные защемляющие связи (защемления, заделки) отличаются от обычного абсолютно жесткого защемления тем, что оказывают препятствие лишь повороту узла и не лишают его линейной подвижности. Сравним основную систему метода перемещений с основной системой метода сил (рис. 6.18, б).

Рис. 6.18. Основные системы метода перемещений (а) и метода сил (б)

Показанная на рис. 6.18, а основная система 9 раз кинематически неопределима. Если основная система метода сил получается удалением связей (рис. 6.18, б), то основная система метода перемещений – введением связей. Переход от заданной системы к основной в методе сил связан со снижением степени ее статической неопределимости, а переход к основной системе метода перемещений – с повышением степени статической неопределимости. За основные неизвестные в методе перемещений, как было отмечено ранее, принимаются угловые Z_1, \ldots, Z_6 и линейные Z_7, Z_8, Z_9 перемещения узлов (рис. 6.18, а).

6.2.3. Канонические уравнения при расчете на действие внешней нагрузки

Основная система (рис. 6.18, а) отличается от заданной (рис. 6.17, а) наличием дополнительных связей, препятствующих угловым и линейным перемещениям узлов. Во введенных заделках возникают реактивные моменты, а в добавленных стержнях – реактивные усилия. Реактивные моменты и реактивные усилия можно обратить в нуль, если повернуть заделки на углы, равные действительным поворотам узлов, и сместить узлы так, чтобы их линейные перемещения были равны перемещениям, возникающим в заданной системе. Математически запись этого факта выражается системой канонических уравнений

$$Z_{1} \mathbf{r}_{11} + Z_{2} \mathbf{r}_{12} + \dots + Z_{n} \mathbf{r}_{1n} + R_{1F} = 0;$$

$$Z_{1} \mathbf{r}_{21} + Z_{2} \mathbf{r}_{22} + \dots + Z_{n} \mathbf{r}_{2n} + R_{2F} = 0;$$

$$Z_{1} \mathbf{r}_{n1} + Z_{2} \mathbf{r}_{n2} + \dots + Z_{n} \mathbf{r}_{nn} + R_{nF} = 0.$$
(6.33)

В матричной форме система (6.33) имеет следующий вид:

$$R\vec{Z} + \vec{R}_F = 0, \qquad (6.34)$$

где R – матрица жесткости системы, или матрица реакций; \vec{Z} – вектор неизвестных перемещений; R_F – вектор грузовых реакций,

Каждый коэффициент r_{ik} (i = 1, 2, ..., n; k = 1, 2, ..., n) системы 170

уравнений (6.34) представляет собой реактивный момент (усилие) во введенном защемлении (в дополнительной связи) i от поворота (линейного перемещения) связи k на единицу. Таким образом, в обозначении реакции r_{ik} индекс i указывает номер связи, в которой вычисляется реакция, а индекс k – номер связи, смещение которой вызывает эту реакцию (i – где возникает реакция, а k – от чего возникает). Свободные члены R_{iF} (i = 1, 2, ..., n) системы уравнений представляют собой реакции (реактивные моменты, реактивные усилия) в i-х связях, вызванные внешней нагрузкой.

6.2.4. Определение коэффициентов и свободных членов системы канонических уравнений

6.2.4.1. Общий способ

Рассмотрим основную систему метода перемещений в двух единичных состояниях $\langle i \rangle$ и $\langle k \rangle$ (рис. 6.19).

Рис. 6.19. Основная системы метода перемещений в двух единичных состояниях

Состояние «*i*» характеризуется перемещением связи *i* на единицу, в результате чего в связи *k* возникает реактивный момент r_{ki} . В состоянии «*k*» поворачивается связь *k* на угол, равный единице, и при этом в связи *i* возникает реакция r_{ik} . Выразим работу внешних сил r_{ik} , r_{kk} состояния «*k*» на перемещениях состояния «*i*» через работу внутренних сил состояния «*k*» (M_k , N_k , Q_k) на перемещениях, отвечающих состоянию «*i*» ($M_i ds/EJ$, $N_i ds/EA$, $\mu Q_i ds/GA$). Учитывая, что на любых возможных бесконечно малых перемещениях сумма работ внешних и внутренних сил равна нулю (см. п. 5.4), получим

$$A_{ki} = r_{ik} \cdot 1 = \sum \int \frac{M_k M_i}{EJ} ds + \sum \int \frac{N_k N_i}{EA} ds + \sum \int \frac{\mu Q_k Q_i}{GA} ds \cdot (6.35)$$

Отсюда, принимая во внимание только работу изгибающих моментов, найдем

$$\boldsymbol{r}_{ik} = \sum \int \frac{\boldsymbol{M}_k \, \boldsymbol{M}_i}{EJ} \,\mathrm{d}\,\boldsymbol{s} \,. \tag{6.36}$$

Следовательно, чтобы найти любой коэффициент системы уравнений (6.33), необходимо в основной системе построить единичные эпюры M_i и M_k и их «перемножить» (т. е. вычисление интегралов (6.36) произвести по известному правилу Верещагина (см. п. 6.1.4)).

На основании теоремы о взаимности работ (см. п. 5.8.1) приравниваем работу внешних сил состояния «k» на перемещениях состояния «i» к работе внешних сил состояния «i» на перемещениях состояния «k»:

$$A_{ki} = A_{ik},$$

$$r_{ik} = r_{ki}.$$
 (6.37)

следовательно,

Из (6.37) следует, что коэффициенты уравнений (6.33) обладают свойством симметрии, т. е. матрица *R* системы (6.34) является симметричной относительно главной диагонали.

Для определения свободных членов системы уравнений (6.33), т. е. реакций, возникающих от внешней нагрузки, рассмотрим два других состояния основной системы: грузовое, характеризующееся действием внешней нагрузки, и единичное, характеризующееся перемещением связи *i* (рис. 6.20).

Рис. 6.20. Основная система метода перемещений в двух состояниях: грузовом (а) и единичном (б)

Работа внешних сил состояния «F» на перемещениях состояния «i» равна

$$A_{Fi} = F \cdot \Delta_{Fi} + R_{iF} \cdot 1. \tag{6.38}$$

На основании теоремы о взаимности работ имеем

$$A_{Fi} = A_{iF},$$

но A_{iF} = 0 (см. рис. 6.20, а, б). Поэтому из уравнения (6.38) получаем

$$R_{iF} = -F \cdot \Delta_{Fi} \,. \tag{6.39}$$

Здесь Δ_{Fi} – перемещение точки C (точки приложения силы F) в статически неопределимой системе, вызванное единичным смещением связи *i*. Для определения этого перемещения необходимо поступить следующим образом. В статически определимой системе приложить в точке *C* по направлению силы *F* единичную F=1 и построить от нее эпюру M_1^* (рис. 6.21).

Рис. 6.21. Грузовая эпюра в основной системе метода сил

Каждую ординату построенной эпюры M_1^* умножить на величину силы F, т. е. получить эпюру M_F^* . Другими словами, M_F^* – эпюра, построенная от внешней нагрузки в любой статически определимой системе, которая может быть получена из заданной, или в основной системе метода перемещений устранением лишних связей, в том числе обязательно и той связи, реакция которой определяется. Теперь искомое перемещение при учете работы только изгибающих моментов равно

$$\Delta_{Fi} = \sum \int \frac{M_F^* M_i}{EJ} \mathrm{d}s, \qquad (6.40)$$

а неизвестная реакция определяется из (6.39):

$$R_{iF} = -\sum \int \frac{M_F^* M_i}{EJ} \mathrm{d}s. \qquad (6.41)$$

Из выражения (6.41) следует: для получения реакции в i-й связи от заданной нагрузки необходимо «перемножить» эпюру изгибающих моментов в статически определимой системе от нагрузки на эпюру изгибающих моментов M_i от единичного смещения i-й связи в основной системе метода перемещений и знак результата изменить на обратный. Заметим, что равенство (6.41) было впервые установлено проф. А.А. Гвоздевым^{*}.

Обратимся еще раз к уравнению (6.39). Примем F=1 и в связи с этим заменим $\Delta_{Fi} = \delta_{Fi}$ и $R_{iF} = r_{iF}$. В результате получим

$$\boldsymbol{r}_{iF} = -\delta_{Fi} \,. \tag{6.42}$$

Равенство (6.42) по существу выражает взаимность реакций и перемещений (см. п. 5.8.4) Оно было установлено Рэлеем. Таким образом, эпюру перемещений δ_{Fi} , вызванных перемещением связи $Z_i = 1$, можно

^{*} Гвоздев А.А. (1897-1967) – выдающийся русский ученый, автор многочисленных работ по строительной механике, теории пластичности и ползучести бетона, в области расчета железобетонных конструкций по предельным состояниям, получивших всемирное признание. Глава российской школы железобетона.

рассматривать как линию влияния реакции в этой связи (с обратным знаком).

6.2.4.2. Статический способ

Основная система метода перемещений, как было показано выше (см. рис. 6.18, а), составлена из однопролетных статически неопределимых стержней. Задача определения внутренних сил в таких стержнях может быть решена любым из известных методов, например методом сил. Результаты таких расчетов сведены в таблицу, которая носит название таблицы стандартных решений (табл. 6.1). В этой таблице приведены численные решения с учетом изгибных деформаций стержней для характерных случаев закрепления, смещения опор, внешней нагрузки и температурных воздействий. Прежде чем перейти к определению реактивных моментов и реактивных усилий, отметим следующее. Все коэффициенты, а также свободные члены уравнений (6.33), (6.34) разделены на две группы: коэффициенты, представляющие реактивные моменты во введенных заделках; коэффициенты, представляющие реактивные усилия во введенных стержнях. Коэффициенты и свободные члены, представляющие реактивные моменты в заделках, определяются вырезанием узлов и составлением уравнений вида $\sum M_{y} = 0$. Коэффициенты и свободные члены, представляющие реактивные усилия во введенных стержнях, можно определить при помощи разрезов, отделяющих часть или всю раму от опор, и составлением уравнений равновесия сил, действующих на отсеченную часть:

$$\sum X = 0; \quad \sum Y = 0.$$

Рассмотрим пример определения реактивных усилий. Реактивное усилие будем считать положительным, если направление его действия совпадает с принятым направлением поворота или линейного смещения узла.

Пусть задана рама, показанная на рис. 6.22, а. Ее основная система представлена на рис. 6.22, б.

Рис. 6.22. Заданная рама (а) и ее основная система (б)

Таблица 6.1

Таблица стандартных решений

Покажем, как определяются коэффициенты r_{11} , r_{21} , r_{31} , r_{41} и свободные члены R_{1F} , R_{2F} , R_{3F} , R_{4F} . Построим эпюры M_1 и M_F (рис. 6.23). Эпюра M_1 построена от поворота на единицу защемления в узле 1 по часовой стрелке. Ординаты эпюры в каждом стержне получены при помощи таблицы стандартных решений (табл. 6.1, схемы 1 и 8). Для построения эпюры M_F использованы схемы 3 и 11 той же таблицы. Следуя правилу, сформулированному выше, реактивные моменты направляем по часовой стрелке (в сторону поворота узлов).

Рис. 6.23. Эпюры *М*₁ и *М*_{*F*}

Вырезаем соответствующие узлы и из уравнений равновесия получаем значения реактивных моментов (рис. 6.24).

Рис. 6.24. К определению реактивных моментов

Определим теперь реактивные усилия (рис. 6.25).

Рис. 6.25. К определению реактивных усилий

6.2.5. Проверки правильности определения реактивных усилий и моментов

Для проверки правильности найденных реактивных усилий с разными индексами воспользуемся равенством (6.37). Например, проверим правильность вычисления реактивного усилия r_{41} . Из (6.37) следует $r_{41} = r_{14}$. Построим эпюру M_4 (рис. 6.26).

Рис. 6.26. Эпюра *М*₄

Как видим, равенство $r_{41} = r_{14}$ соблюдается, следовательно, реактивный момент r_{14} найден правильно.

Для проверки правильности реактивных усилий с одинаковыми индексами (i = k) и реактивных усилий, вызванных внешней нагрузкой, воспользуемся зависимостями (6.36) и (6.41). Определим r_{11} :

$$\boldsymbol{r}_{11} = \frac{1}{EJ} \left[\frac{1}{2} \frac{3EJ}{I} \cdot I \frac{2}{3} \frac{3EJ}{I} + \frac{1}{2} \frac{3EJ}{h} \cdot h \frac{2}{3} \frac{3EJ}{h} + \frac{1}{2} \frac{4EJ}{h} \cdot h \left(\frac{2}{3} \frac{4EJ}{h} - \frac{1}{3} \frac{2EJ}{h} \right) + \frac{1}{2} \frac{2EJ}{h} \cdot h \left(\frac{2}{3} \frac{2EJ}{h} - \frac{1}{3} \frac{4EJ}{h} \right) \right] = \frac{3EJ}{I} + \frac{7EJ}{h} .$$

Этот результат соответствует найденному статическим способом значению (см. рис. 6.24).
Найдем реактивное усилие R_{4F} . Для этого построим эпюру M_F^* в основной системе метода сил (рис. 6.27, б):

Рис. 6.27. Эквивалентная система метода сил (а) и эпюра моментов M_F^* (б)

Знак этого результата в соответствии с (6.41) следует изменить на обратный. Тогда получим

$$R_{4F} = -F$$

что также соответствует усилию, найденному статическим способом (см. рис. 6.25). После того как найдены и проверены коэффициенты и свободные члены системы уравнений (6.33) или (6.34), производится ее решение.

6.2.6. Решение системы линейных алгебраических уравнений в матричной форме

В п. 6.1.5 решение системы канонических уравнений метода сил было выполнено методом квадратного корня. Здесь изложим другой метод, матричный.

Система уравнений (6.34) имеет единственное решение, если матрица R невырожденная, т. е. $\det R \neq 0$. В этом случае матрица R имеет обратную матрицу, и решение системы записывается так:

$$\vec{Z} = R^{-1} \vec{R}_F$$
. (6.43)

Чтобы найти обратную матрицу R^{-1} , надо построить вспомогательную матрицу C, составленную из алгебраических дополнений r_{ij} матрицы R, транспонировать ее и умножить на число $1/\det R$, т. е.

$$R^{-1} = \frac{1}{\det R} C^{\mathsf{T}} \,. \tag{6.44}$$

Каждый элемент вспомогательной матрицы С_{іі}

$$C_{ij} = (-1)^{i+j} M_{ij} . (6.45)$$

Минором M_{ij} называется определитель (n-1) порядка, полученный из определителя [R] вычеркиванием *i* -й строки и *j* -го столбца.

Для системы порядка n = 3 матрица R имеет вид (см. (6.34))

$$\boldsymbol{R} = \begin{pmatrix} \boldsymbol{r}_{11} & \boldsymbol{r}_{12} & \boldsymbol{r}_{13} \\ \boldsymbol{r}_{21} & \boldsymbol{r}_{22} & \boldsymbol{r}_{23} \\ \boldsymbol{r}_{31} & \boldsymbol{r}_{32} & \boldsymbol{r}_{33} \end{pmatrix}.$$

Вспомогательная матрица

$$\boldsymbol{C} = \begin{pmatrix} \boldsymbol{C}_{11} & \boldsymbol{C}_{12} & \boldsymbol{C}_{13} \\ \boldsymbol{C}_{21} & \boldsymbol{C}_{22} & \boldsymbol{C}_{23} \\ \boldsymbol{C}_{31} & \boldsymbol{C}_{32} & \boldsymbol{C}_{33} \end{pmatrix}.$$

Найдем элементы вспомогательной матрицы. Для нахождения C_{11} в матрице R вычеркиваем первую строку и первый столбец. Тогда в соответствии с (6.45) имеем

$$\boldsymbol{c}_{11} = \boldsymbol{r}_{22} \boldsymbol{r}_{33} - \boldsymbol{r}_{32}^2. \tag{6.46}$$

Аналогично находим остальные элементы матрицы *C* :

$$c_{12} = c_{21} = -(r_{21}r_{33} - r_{31}r_{23});$$

$$c_{13} = c_{31} = r_{21}r_{32} - r_{31}r_{22};$$

$$c_{22} = r_{11}r_{33} - r_{31}^{2};$$

$$c_{23} = c_{32} = -(r_{11}r_{32} - r_{31}r_{12});$$

$$c_{33} = r_{11}r_{22} - r_{12}^{2}.$$

(6.47)

Транспонированная матрица

$$C^{T} = \begin{pmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{pmatrix} = C$$

Теперь

$$Z_{1} = -\frac{1}{\det R} (C_{11} R_{1F} + C_{12} R_{2F} + C_{13} R_{3F});$$

$$Z_{2} = -\frac{1}{\det R} (C_{21} R_{1F} + C_{22} R_{2F} + C_{23} R_{3F});$$

$$Z_{3} = -\frac{1}{\det R} (C_{31} R_{1F} + C_{32} R_{2F} + C_{33} R_{3F}).$$
(6.48)

Для системы более высокого порядка решение может быть найдено аналогично.

6.2.7. Построение эпюр *M*, *Q*, *N* в заданной системе

После того как система канонических уравнений (6.33), (6.34) метода перемещений решена и найдены значения неизвестных углов поворота и линейных перемещений узлов, можно перейти к построению окончательных эпюр в заданной системе. Окончательная эпюра моментов получается суммированием ординат эпюры M_F , построенной в основной системе, с ординатами единичных эпюр, умноженных на значения неизвестных:

$$M = M_1 Z_1 + M_2 Z_2 + \dots + M_n Z_n + M_F.$$
(6.49)

Правильность построения окончательной эпюры *М* может быть проверена при помощи приемов, которые применялись в методе сил (см. п. 6.1.6), в частности по формуле (6.18):

$$\sum \int \frac{MM_s}{EJ} \mathrm{d}s = 0,$$

где *M* – окончательная эпюра моментов (6.49), *M*_s – суммарная единичная эпюра, построенная в основной системе метода сил.

Большое значение имеет статическая проверка равновесия моментов в узлах, так как у всех суммируемых эпюр узлы не уравновешены (см., например, рис. 6.26). Невыполнение условия равновесия узлов ($\sum M = 0$) в окончательной эпюре будет свидетельствовать о неправильном определении значений неизвестных.

Эпюру поперечных сил можно построить по эпюре M по полученной ранее формуле (6.19):

$$Q = Q^0 + \frac{M_n - M_{n-1}}{I_n}$$

Напомним, что M_n и M_{n-1} – соответственно правый и левый опорные моменты рассматриваемого элемента; I_n – пролет рассматриваемого элемента; Q^0 – поперечная сила в нужном сечении элемента как балки на двух опорах.

По эпюре поперечных сил способом вырезания узлов может быть построена эпюра продольных сил N (см. п. 6.1.6). Проверка эпюр Q и Nпроизводится обычным путем. При этом большое значение имеет статическая проверка равновесия отдельных частей рамы.

6.2.8. Расчет на температурные воздействия

Изменение температурного режима в статически неопределимых системах, как правило, приводит к появлению в них внутренних усилий и напряжений (см. п. 6.1.7).

Система канонических уравнений при температурных воздействиях отличается от системы (6.34) вектором-столбцом свободных членов и имеет следующий вид:

$$R\vec{Z} + \vec{R}_t = 0. (6.50)$$

Здесь элементы вектора-столбца \vec{R}_t представляют собой реакции введенных связей в основной системе от симметричных и обратно-симметричных температурных воздействий:

$$\boldsymbol{R}_{t} = \begin{bmatrix} \boldsymbol{R}_{1t} + \boldsymbol{R}_{1t} \\ \boldsymbol{R}_{2t} + \boldsymbol{R}_{2t} \\ \boldsymbol{R}_{nt} + \boldsymbol{R}_{nt} \end{bmatrix}.$$
(6.51)

Определим реакции для рамы, показанной на рис. 6.28, а.

Рис. 6.28. Схемы рамы (а), симметричные (б) и обратно-симметричные (в) температурные воздействия

Сначала найдем удлинения стержней рамы от симметричного температурного воздействия (рис. 6.28, б) в основной системе (рис. 6.29, а). Будем считать $t_{\rm BH} > 0$, $t_{\rm H} > 0$, $t_{\rm H} > t_{\rm BH}$. После этого, пользуясь таблицей стандартных решений (табл. 6.1), построим эпюру M_t и найдем R_{1t} и R_{2t} (рис. 6.29, б).

Рис. 6.29. Схема перемещений узлов рамы от температурных воздействий tи эпюра M_t

Для определения реакций от обратно-симметричного температурного воздействия (рис. 6.28, в) при помощи табл. 6.1 (схемы 7 и 14) построим эпюру M'_t (рис. 6.30).

Рис. 6.30. Эпюра M'_t

Окончательная эпюра моментов в заданной системе может быть построена по формуле

$$M_T = M_1 Z_1 + M_2 Z_2 + \dots + M_n Z_n + M_t + M_t'.$$
(6.52)

Правильность построения окончательной эпюры M_{τ} от температурных воздействий подтверждается следующими правилами: должно быть соблюдено равенство нулю перемещений по направлению отброшенных связей в любой основной системе метода сил (см. формулу (6.24)); все узлы окончательной эпюры моментов должны быть уравновешены.

Эпюра поперечных сил строится по эпюре моментов (см. формулу (6.19) при $Q^0 = 0$), а эпюра продольных сил – по эпюре поперечных сил способом вырезания узлов.

6.2.8.1. Пример расчета рамы на температурные воздействия

Заданная система показана на рис. 6.31, а. Неизвестными являются два угловых перемещения Z_1 и Z_2 . Основная система показана на рис. 6.31, б. На рис. 6.31, в, г приведены единичные эпюры M_1 и M_2 . Температурные воздействия раскладываем на симметричные и обратно симметричные и строим эпюры M_t (рис. 6.31, д) и M'_t (рис. 6.31, е). Для построения эпюры M_t использована схема перемещений узлов рамы от симметричных температурных воздействий, которая показана на рис. 6.31, б.

Система канонических уравнений имеет вид

 $\begin{pmatrix} 5EJ & 2EJ \\ 2EJ & \frac{31EJ}{4} \end{pmatrix} \times \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} + \begin{pmatrix} \frac{2295\alpha EJ}{8} - 100\alpha EJ \\ \frac{3795\alpha EJ}{16} - 325\alpha EJ \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \bullet$

Решением системы уравнений являются

Рис. 6.31. К расчету рамы на температурные воздействия (см. также с. 186)

Рис. 6.31. Окончание

Окончательная эпюра строится в соответствии с зависимостью (6.52). Эпюры « M_1Z_1 » и « M_2Z_2 » показаны на рис. 6.32.

Чтобы убедиться в правильности эпюры M_{τ} (рис. 6.33, а), необходимо соблюсти условие (6.24). На рис. 6.33, б, в, г показаны основная система метода сил и единичные эпюры M_4 и N_4 .

Рис. 6.32. К расчету рамы на температурные воздействия, эпюры M_1Z_1 и M_2Z_2

Рис. 6.33. К расчету рамы на температурные воздействия

Осуществим проверку (6.24):

$$\sum \int \frac{M_4 M_T}{EJ} d\mathbf{s} = \frac{1}{2} \cdot 4 \cdot 4 \left(\frac{2}{3} \cdot 136, 49 + \frac{1}{3} \cdot 40, 144 \right) \alpha = 834, 997 \alpha ;$$

$$\Delta_{4t} = \pm \sum \alpha t \omega_{N4} \pm \sum \frac{\alpha t'}{d} \omega_{M4} = -\alpha \cdot 10 \cdot 2 - \alpha \cdot 5 \cdot 3 - \frac{\alpha \cdot 40}{0, 4} \cdot \frac{1}{2} 4 \cdot 4 = -835 \alpha ;$$

$$\sum \int \frac{M_4 M_T}{EI} d\mathbf{s} + \Delta_{4t} = 834, 997 \alpha - 835 \alpha \approx 0.$$

Таким образом, мы убедились, что перемещение по направлению отброшенной связи X_4 в основной системе метода сил отсутствует, что соответствует граничному условию в заданной системе (рис. 6.31, а). Аналогичную проверку можно осуществить относительно остальных отброшенных связей (либо всех вместе, либо по одной). Мы здесь ограничимся одной проверкой. Построим теперь окончательные эпюры Q_T и N_T (рис. 6.34, а, б). Обратим внимание на то, что на рис. 6.34 показан процесс определения поперечных и продольных сил.

Рис. 6.34. К расчету рамы на температурные воздействия (см. также с. 189)

Рис. 6.34. Окончание

6.2.9. Расчет на смещение опорных связей

Смещение опорных или других связей в статически неопределимых системах вызывает отличные от нуля усилия. Это было показано в п. 6.1.8. Система канонических уравнений в излагаемом здесь методе перемещений в случае смещения опорных или других связей имеет вид

$$R\vec{Z} + \vec{R}_{\Delta} = 0. \tag{6.53}$$

Здесь \vec{R}_{Δ} – вектор реакций во введенных связях в основной системе от заданного смещения. Как и ранее, покажем, как найти эти реакции в общем виде, а затем рассмотрим конкретный пример.

На рис. 6.35 показана рама, у которой одна из опор перемещается.

Рис. 6.35. К расчету рам на смещение опорных связей

Определим реактивные моменты во введенных заделках 1 и 2 от заданного смещения опоры. При помощи таблицы стандартных решений (табл. 6.1) построим эпюру M_{Δ} (рис. 6.36).

Рис. 6.36. Эпюра *М*_л

Значения реактивных моментов показаны на рис. 6.36. После вычисления элементов матрицы R (6.34) и R_{Δ} (рис. 6.36) производится решение системы уравнений (6.53) и находятся неизвестные $Z_1, Z_2, ..., Z_n$.

Эпюра моментов в заданной статически неопределимой системе может быть построена по формуле

$$M = M_1 Z_1 + M_2 Z_2 + \ldots + M_n Z_n + M_{\Delta}.$$
(6.54)

Если эпюра моментов построена правильно, то должны выполняться следующие условия:

а) равенство нулю перемещений в основной системе метода сил по направлению реакций отброшенных связей (6.29);

б) равновесие узлов эпюры моментов.

Эпюра поперечных сил строится по формуле (6.19) при $Q^0 = 0$.

6.2.9.1. Пример расчета рамы на смещение опорных связей

Рама, которую необходимо рассчитать на заданное смещение опорных связей, показана на рис. 6.37, а. Число основных неизвестных равно двум (одно угловое и одно линейное перемещение). Основная система метода перемещений показана на рис. 6.37, б. Далее в соответствии с порядком, изложенным в п. 6.2.9, строим единичные эпюры (рис. 6.37, в, г) и эпюру от заданного смещения M_{Δ} (рис. 6.37, д). На этих же рисунках приведены значения реакций.

Система канонических уравнений имеет следующий вид:

$$\begin{pmatrix} 6EJ & \frac{2EJ}{3} \\ \frac{2EJ}{3} & \frac{16EJ}{9} \end{pmatrix} \times \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} + \begin{pmatrix} EJ \\ 10 \\ -\frac{EJ}{15} \\ -\frac{EJ}{15} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} .$$

Решением этой системы уравнений являются

$$Z_1 = -\frac{5}{230}$$
, $Z_2 = \frac{21}{460}$.

Окончательную эпюру моментов строим в соответствии с уравнением (6.54). Процесс построения эпюры M_C показан на рис. 6.37, е и 6.38, а,б. Проверку правильности построенной эпюры моментов осуществляем по (6.29) (основная система метода сил и эпюра M_1^* показаны на рис. 6.38, в, г):

$$\sum \int \frac{M_c M_1^*}{EJ} d\mathbf{s} = \frac{1}{2} \cdot 1 \cdot 3 \frac{2}{3} 15,22 \cdot 10^{-3} + \frac{1}{2} \cdot 1 \cdot 3 \left(\frac{2}{3} 121,74 \cdot 10^{-3} + \frac{1}{3} 26,09 \cdot 10^{-3} \right) = 150,005 \cdot 10^{-3}$$
$$\sum R \cdot \mathbf{c} = -\frac{1}{3} \frac{15}{100} + 1 \cdot \frac{2}{10} = 150 \cdot 10^{-3} .$$

Условие (6.29) выполняется: перемещение по направлению отброшенной связи равно нулю, как в заданной системе (рис. 6.37, а).

Аналогично определяется перемещение по направлению остальных отброшенных связей (рис. 6.38, в). Предоставляем возможность любознательному студенту самому убедиться в справедливости условия (6.29) либо применительно к каждой связи в отдельности, либо всех связей сразу.

Эпюры поперечных и продольных сил показаны на рис. 6.38, д, е. Процесс вычисления поперечных и продольных сил для каждого элемента рамы и узла приведен на рис. 6.39.

Рис. 6.37. К расчету рамы на смещение опорных связей: а - заданная система; б - основная система; в - эпюра M_1 ; г - эпюра M_2 ; д - эпюра M_Δ ; е - эпюра M_1Z_1

Рис. 6.38. К расчету рамы на смещение опорных связей: а - эпюра M_2Z_2 ; б - эпюра M_2 ; в - основная система метода сил; г - эпюра M_1^* ; д - эпюра Q_X ; е - эпюра N_C

Рис. 6.39. К расчету рамы на смещение опорных связей

6.3. Смешанный метод

Сущность смешанного метода может быть пояснена простым примером (рис. 6.40, а).

Рис. 6.40. К расчету рам смешанным методом: а – заданная система; б – основная система

Расчет этой рамы методом сил (см. п. 6.1) требует составления четырех уравнений, методом перемещений – также четырех уравнений. Вместо того, чтобы образовать основную систему по одному из этих методов, создадим ее по смешанному принципу, а именно: одновременно отбросим связи в одной части рамы и введем дополнительные связи в другой части (рис. 6.40, б). Тогда система канонических уравнений приобретает следующий вид:

$$\delta_{11}X_1 + \delta'_{12}Z_2 + \Delta_{1F} = 0;$$

$$\mathbf{r}'_{21}X_1 + \mathbf{r}_{22}Z_2 + \mathbf{R}_{2F} = 0.$$
(6.55)

Первое уравнение выражает ту мысль, что суммарное перемещение по направлению X_1 , вызванное всеми факторами, равно нулю. Второе уравнение представляет запись того условия, что реактивный момент в заделке 2 равен нулю.

В матричной форме система (6.55) записывается так:

$$D\begin{pmatrix} \vec{X}_1\\ \vec{Z}_2 \end{pmatrix} + \begin{pmatrix} \vec{\Delta}_{1F}\\ \vec{R}_{2F} \end{pmatrix} = 0, \qquad (6.56)$$

где матрица жесткости-податливости *D* равна

$$\boldsymbol{D} = \begin{pmatrix} \delta_{11} & \delta_{12} \\ \boldsymbol{r}_{12}' & \boldsymbol{r}_{22} \end{pmatrix} \cdot$$
(6.57)

В уравнениях (6.55), (6.57) δ'_{12} – перемещение, вызванное поворотом заделки на угол $Z_2 = 1$; Γ'_{21} – реактивный момент, вызванный силой $X_1 = 1$.

На основании теоремы о взаимности реакций и перемещений (см. формулу (6.42), в которой индекс F заменен на индекс K) имеем соотношение

$$\boldsymbol{r}_{ik} = -\delta_{ki} , \qquad (6.58)$$

связывающее δ'_{12} и r'_{21} .

Покажем на примере (рис. 6.40, а) нахождение коэффициентов и свободных членов системы уравнений (6.55). Для этого в основной системе (рис. 6.40, б) построим единичные (рис. 6.41, а, б) и грузовую эпюры (рис. 6.41, в).

Рис. 6.41. Определение коэффициентов и свободных членов системы канонических уравнений смешанного метода

Коэффициент δ_{11} найдем, «перемножив» эпюру M_1 на себя:

$$\delta_{11} = \sum \int \frac{M_1 M_1}{EJ} d\mathbf{s} = \left(\frac{1}{2}I \cdot I \frac{2}{3} \cdot I + I \cdot I \cdot I\right) \frac{1}{EJ} = \frac{4I^3}{3EJ}$$

Из вырезания узла в состоянии $X_1 = 1$ по эпюре M_1 найдем, что реакция $\Gamma'_{21} = -I$. Следовательно, в данном случае

$$\delta_{12}' = I,$$

что иллюстрирует общую зависимость (6.58).

Грузовые коэффициенты найдем с использованием эпюры M_F (рис. 6.41, в): Δ_{1F} – «перемножением» эпюр M_1 и M_F

$$\Delta_{1F} = \sum \int \frac{M_1 M_F}{EJ} \,\mathrm{d}\, \mathbf{S} = -\frac{5 \, q I^4}{8 E J}$$

а *R*₂*F* путем вырезания узла **2** в грузовом состоянии (рис. 6.41, в).

Последовательно исключая неизвестные из системы уравнений (6.55), найдем

$$Z_2 = \frac{ql^3}{168EJ}$$
, $X_1 = \frac{13ql}{28}$.

Окончательная эпюра моментов строится на основании принципа суперпозиции по формуле

$$\boldsymbol{M} = \boldsymbol{M}_1 \boldsymbol{X}_1 + \boldsymbol{M}_2 \boldsymbol{Z}_2 + \boldsymbol{M}_F.$$

Вид окончательной эпюры *М* изображен на рис. 6.42.

Рис. 6.42. Окончательная эпюра моментов

Таким образом, мы видели, что коэффициенты уравнений смешанного метода (6.55) имеют различный механический смысл: δ_{ik} и Δ_{iF} – это перемещения, а Γ_{ik} и R_{iF} – реакции. В общем случае они образуют четыре блока матрицы D и грузового вектора уравнения (6.56):

$$D = \begin{bmatrix} A_{XX} & A_{XZ} \\ R_{ZX} & R_{ZZ} \end{bmatrix}; \begin{bmatrix} \vec{\Delta}_{F} \\ \vec{R}_{F} \end{bmatrix}.$$
(6.59)

Элементы блоков A_{xx} и R_{zz} определяются так же, как в методах сил и перемещений. Поэтому они могут быть выражены через внутренние силы с помощью интегралов (6.4) и (6.36). Элементы блоков A_{xz} и R_{zx} , симметрично расположенные относительно главной диагонали, будут численно всегда равны, но противоположны по знаку. Сами же блоки будут представлять взаимно-транспонированные матрицы:

$$A_{xz} = -R_{xz}^T$$

Матрица *D* в целом симметрична.

В заключение подраздела отметим, что смешанный метод по сравнению с методами сил и перемещений позволяет уменьшить число неизвестных, а следовательно, и уменьшить число линейных алгебраических уравнений.

6.4. Особенности расчета симметричных систем на несимметричные воздействия

В ряде задач для ускорения расчета симметричных систем бывает удобно разложить внешние воздействия на симметричные и антисимметричные составляющие. При этом может оказаться, что к одной части воздействия, например симметричной, проще применять один метод расчета (как правило, это метод перемещений или смешанный метод), а на антисимметричное воздействие расчет проще произвести другим методом (например, методом сил). Указанный подход называют комбинированным приемом расчета. Поясним сказанное на примере системы, изображенной на рис. 6.43.

Рис. 6.43. К расчету симметричной рамы на несимметричное воздействие

На рис. 6.44, а показаны неизвестные метода перемещений, а на рис. 6.44, б – неизвестные метода сил. Как видно из рис. 6.44, основная система метода сил получена путем разреза заданной рамы по оси симметрии и введения двух абсолютно жестких консолей. Введение таких консолей дает широкую возможность варьировать выбор основных неизвестных. Для иллюстрации этого расположим неизвестные X_3 на конце консолей.

Рис. 6.44. Основные системы и основные неизвестные Построим вначале единичные и грузовую эпюры в основной системе метода перемещений (рис. 6.45).

Рис. 6.45. К расчету симметричной рамы методом перемещений

Коэффициенты системы уравнений (6.34) будут следующими (см. рис. 6.45, а-д):

$$r_{11} = r_{22} = 4EJ\left(\frac{1}{h} + \frac{1}{l}\right);$$
 $r_{33} = \frac{24EJ}{h^3};$ $r_{12} = r_{21} = \frac{2EJ}{l};$
 $r_{13} = r_{31} = r_{32} = r_{23} = -\frac{6EJ}{h^2}.$

При симметричном нагружении $R_{1F} = -R_{2F}$, $R_{3F} = 0$. При несимметричном нагружении $R_{3F} \neq 0$.

Анализ решения (6.48) при симметричном нагружении показывает, что $Z_1 = -Z_2$, $Z_3 = 0$, т. е. при действии симметричной нагрузки деформации будут симметричными, следовательно, перемещения узлов **1** и **2** равны нулю, а их углы поворота равны и взаимно противоположны. Таким образом, число неизвестных при принятых условиях нагружения удалось сократить до единицы.

Рассмотрим теперь метод сил. В основной системе (рис. 6.44, б) построим, как и ранее, единичные и грузовую эпюры (рис. 6.46). Нет надобности строить эпюры на протяжении консолей. Для последних мы приняли $J = \infty$, поэтому независимо от вида эпюры все интегралы на этом участке обратятся в нуль.

Рис. 6.46. К расчету симметричной рамы методом сил

В силу того, что эпюры M_1 и M_2 взаимно ортогональны (M_1 – антисимметричная, M_2 – симметричная), $\delta_{12} = \delta_{21} = 0$. Обе эпюры M_2 и M_3 симметричны, однако $\delta_{23} = \delta_{32} = 0$, так как длина жестких консолей принята равной $\frac{2}{3}h$, что совпадает с центром тяжести эпюры M_2 . Таким образом, система уравнений (6.2) метода сил распадается на три независимые друг от друга уравнения:

$$X_1 \delta_{11} + \Delta_{1F} = 0;$$

$$X_2 \delta_{22} + \Delta_{2F} = 0;$$

$$X_3 \delta_{33} + \Delta_{3F} = 0.$$

В том случае, когда рама нагружена только симметричной нагрузкой, получается $\Delta_{1F} = 0$, откуда $X_1 = 0$. В том случае, когда рама нагружена антисимметричной нагрузкой, имеем $\Delta_{2F} = 0$, $\Delta_{3F} = 0$, откуда $X_2 = X_3 = 0$.

Другими словами, когда на симметричное сооружение действует симметричная нагрузка, то обратно-симметричные неизвестные (X_1) обращаются в нуль; наоборот, когда действует антисимметричная нагрузка, то симметричные неизвестные (X_2 , X_3) обращаются в нуль.

В заключение этого подраздела отметим, что на основании проведенного анализа расчет рам при симметричном воздействии следует производить методом перемещений, а при антисимметричном – методом сил.

6.5. Метод перемещений в матричной форме

6.5.1. Общие положения и предпосылки

Примем, как и в классическом методе перемещений (п. 6.2), следующие гипотезы: деформации растяжения-сжатия и сдвига малы по сравнению с деформациями изгиба и ими можно пренебречь, т. е. считать, что перемещения узлов происходят только за счет изгиба стержней; перемещения системы малы, поэтому пренебрегаем сближением концов стержней при изгибе, т. е. длина стержня остается равной длине хорды, соединяющей его концы после искривления; в шарнирно-стержневых системах (фермах) деформации растяжения-сжатия учитываются как единственные.

Рассмотрим раму (рис. 6.47).

Рис. 6.47. Схема заданной рамы

В раме будет два неизвестных – поворот жесткого узла Z_1 и линейное перемещение обоих узлов по горизонтали Z_2 (рис. 6.48, а).

Рис. 6.48. Основная система метода перемещений (а); направление перемещений, сечения с неизвестными усилиями (моментами) *S*₁ – *S*₄ (б)

На рис. 6.48, б связи, закрепляющие узлы от возможных перемещений, условно не показаны.

Построим грузовую эпюру метода перемещений (рис. 6.49).

Рис. 6.49. Грузовая эпюра *М_F*

Вырезаем жесткий узел и находим суммарный момент в жестком узле (рис. 6.50).

Рис. 6.50. К определению суммарного момента в жестком узле

Суммарный момент в жестком узле равен

$$P_1 = 24 - 5 - 30 = -11 \,\mathrm{KHM}$$

Чтобы найти суммарную силу в направлении Z_2 , рассмотрим равновесие ригеля, отделенного от рамы двумя сечениями (рис. 6.51).

5 KH $F_2 = 2 \text{ KH}$

Тогда суммарная сила в направлении Z₂ равна

$$P_2 = 2 + 5 = 7 \, \text{KH}.$$

Теперь вектор внешних сил будет иметь вид

$$P = |-11 \quad 7|^{\mathrm{T}}.$$
 (6.60)

Расчетная схема рамы, соответствующая вектору (6.60), показана на рис. 6.52.

Рис. 6.52. Расчетная схема рамы

Заметим, что вертикальные реакции от равномерно распределенной нагрузки не дают составляющих в вектор (6.60).

Чтобы записать вектор грузовой эпюры (рис. 6.49), установим правило знаков. Условимся положительными моментами считать моменты, вращающие элемент по часовой стрелке (рис. 6.53).

Рис. 6.53. Правило знаков

В этом случае в стержне возникает отрицательная поперечная сила *Qij* , вращающая элемент против часовой стрелки (рис. 6.53):

$$Q_{ij} = \frac{-M_j - M_i}{l} = -\frac{M_i + M_j}{l}$$

Вектор грузовой эпюры (рис. 6.49) запишется следующим образом:

$$S_0 = \begin{vmatrix} -5 & 5 & -24 & 0 \end{vmatrix}^{\mathrm{T}}.$$
 (6.61)

6.5.2. Уравнения равновесия. Статическая матрица

Направление внешних сил соответствует направлению, выбранному в расчетной схеме (рис. 6.52), направление внутренних сил получено в соответствии с правилом знаков (рис. 6.53).

Положительные моменты вращают стержни по часовой стрелке, следовательно, в соответствии с третьим законом Ньютона моменты S_2 и S_3 вращают узел против часовой стрелки (рис. 6.54, а).

Рис. 6.54. К составлению уравнений равновесия

Поперечные силы в стержнях всегда отрицательны, поэтому узлы рамы они вращают против часовой стрелки (рис. 6.54, б).

Уравнения равновесия жесткого узла и верхней части рамы (рис. 6.48) имеют вид

$$P_1 = S_2 + S_3,$$

$$P_2 = -S_1/4 - S_2/4 - S_4/4.$$
(6.62)

Запишем систему уравнений (6.62) в матричной форме:

$$P = A \cdot S , \qquad (6.63)$$

где

$$P = (P_1 \quad P_2)^{\mathrm{T}}, \qquad S = (S_1 \quad S_2 \quad S_3 \quad S_4)^{\mathrm{T}},$$
 (6.64)

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 0 & -\frac{1}{4} \end{pmatrix}.$$
(6.65)

Покажем, что запись уравнений (6.62) в матричной форме соответствует действительности:

$$\begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -\frac{1}{4} & -\frac{1}{4} & 0 & -\frac{1}{4} \end{pmatrix} \begin{pmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \end{pmatrix},$$

отсюда

$$P_1 = 0 \cdot S_1 + S_2 + S_3 + 0 \cdot S_4,$$
$$P_2 = -\frac{S_1}{4} - \frac{S_2}{4} + 0 - \frac{S_4}{4}.$$

Статическая матрица A (6.65) имеет размер $M \cdot n$, где M – число строк, равное числу возможных перемещений узлов; n – число столбцов, равное числу внутренних усилий. При M > n система изменяема (W = m - n > 0).

При M = n система неизменяема и статически определима, если det $A \neq 0$ (при det A = 0 система мгновенно изменяема).

При M < n система неизменяема и статически неопределима (число лишних связей $\Pi = n - m$).

6.5.3. Принцип двойственности статических и геометрических уравнений

Для доказательства этого принципа используем принцип возможных перемещений Лагранжа, в соответствии с которым для системы, находящейся в равновесии, суммарная работа внешних и внутренних сил на любом возможном перемещении равна нулю.

Работа внешних сил P = AS на возможных перемещениях δZ определяется выражением

$$V_{P} = P^{\mathrm{T}} \delta Z = (AS)^{\mathrm{T}} \delta Z = A^{\mathrm{T}} S^{\mathrm{T}} \delta Z.$$
(6.66)

Работа внутренних сил S на возможных деформациях $\delta e = \delta(BZ) = B\delta Z$ запишется в виде

$$V_{\mathsf{S}} = -\mathbf{S}^{\mathrm{T}} \delta \mathbf{e} = -\mathbf{S}^{\mathrm{T}} \mathbf{B} \delta \mathbf{Z} \,. \tag{6.67}$$

Здесь знак минус показывает, что работа внутренних сил всегда отрицательна, так как внутренние силы препятствуют деформациям. В соответствии с принципом возможных перемещений

$$V_P + V_S = 0.$$
 (6.68)

Подставляем (6.66), (6.67) в (6.68). В результате имеем

$$S^{\mathrm{T}}A^{\mathrm{T}}\delta Z = S^{\mathrm{T}}B\delta Z$$

Это равенство возможно при условии

$$\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}} \,. \tag{6.69}$$

В соответствии с доказанным принципом уравнения неразрывности деформаций для любой упругой системы могут быть получены из уравнений равновесия простой заменой строк столбцами матрицы коэффициентов уравнений равновесия (6.65) и наоборот:

$$\boldsymbol{\boldsymbol{\varepsilon}} = \begin{bmatrix} \boldsymbol{\varepsilon} & -\frac{1}{4} \\ 1 & -\frac{1}{4} \\ 1 & \boldsymbol{\varepsilon} \\ \boldsymbol{\varepsilon} & -\frac{1}{4} \end{bmatrix}. \tag{6.70}$$

Матрица деформаций (6.70) выражает деформации \mathfrak{S}_i элементов стержневой системы через перемещения Z_k ее узлов. Ее размер $\mathfrak{M} \cdot \mathfrak{n}$, где \mathfrak{M} – число строк, равное числу деформаций \mathfrak{S}_i и числу неизвестных усилий S_i , \mathfrak{n} – число столбцов, равное числу возможных узловых перемещений Z_k ,

$$e=BZ=A^{\mathrm{T}}Z,\qquad(6.71)$$

где $e = (e_1 e_2 e_3 e_4)^{T}$ – вектор деформаций элементов;

 $Z = (Z_1 Z_2)^{T}$ – вектор перемещений узлов.

6.5.4. Физические уравнения. Матрица жесткости системы

Установим связь между усилиями и деформациями системы. Для *n*-го элемента системы эту связь на основании закона Гука можно представить в виде

$$S_n = k_n e_n, \tag{6.72}$$

где S_n и e_n – векторы усилий и деформаций в элементе, k_n – матрица жесткости элемента.

Покажем, как получается матрица жесткости типовых стержневых элементов на плоскости.

а) шарнирно-стержневой элемент (рис. 6.55).

Рис. 6.55. Шарнирно-стержневой элемент

В соответствии с законом Гука для осевого растяжения-сжатия удлинение элемента связано с осевой силой формулами

$$\mathbf{e}_{i} = \frac{S_{i}\ell_{n}}{(EA)_{n}} \qquad \text{ИЛИ} \qquad S_{i} = \left(\frac{EA}{\ell}\right)_{n} \mathbf{e}_{i}$$

и, следовательно,

$$k_n = \left(\frac{EA}{\ell}\right)_n; \tag{6.73}$$

б) комбинированный балочный элемент с заделкой и шарниром по концам (рис. 6.56).

Рис. 6.56. Комбинированный балочный элемент (a), эпюра моментов от поворота заделки (б)

Как известно, ордината эпюры моментов равна $S_i = 3 \left(\frac{EJ}{\ell}\right)_n e_i$, и матрица жесткости элемента имеет вид

$$k_n = 3 \left(\frac{EJ}{\ell}\right)_n; \tag{6.74}$$

в) балочный элемент с двумя заделками по концам (рис. 6.57).

Рис. 6.57. Балочный элемент с двумя заделками по концам

Опорные моменты S_i и S_j при повороте сечения *i* на e_i и сечения *j* на e_j можно получить суммированием эпюр моментов, полученных при повороте сначала узла *i* на e_i (рис. 6.57, а), затем узла *j* на угол e_j (рис. 6.57, б):

$$S_{j} = \left(\frac{4EJ}{\ell}\right)_{n} \mathbf{e}_{j} + \left(\frac{2EJ}{\ell}\right)_{n} \mathbf{e}_{j},$$
$$S_{j} = \left(\frac{2EJ}{\ell}\right)_{n} \mathbf{e}_{j} + \left(\frac{4EJ}{\ell}\right)_{n} \mathbf{e}_{j}.$$

Тогда составляющие формулы (6.72)

$$S_n = k_n e_n$$

будут:

$$S_n = (S_i S_j)^{\mathrm{T}}$$
 – вектор усилий элемента "*n*";
 $e_n = (e_i e_j)^{\mathrm{T}}$ – вектор деформаций элемента "*n*";
 $k_n = \left(\frac{EJ}{\ell}\right)_n \begin{pmatrix} 4 & 2\\ 2 & 4 \end{pmatrix}$ – матрица жесткости элемента. (6.75)

Для всех элементов системы, содержащей *M* искомых внутренних усилий, связь между усилиями и деформациями запишем в виде

$$S = k_n e, \tag{6.76}$$

где $S = [S_1, S_2...S_m]^T$ – вектор усилий в системе;

 $e = [e_1, e_2...e_n]^T$ – вектор деформаций системы;

k – матрица жесткости всех элементов системы,

$$\boldsymbol{\kappa} = \begin{bmatrix} \kappa_1 & \kappa_2 & \kappa_3 & \dots & \kappa_n \\ \kappa_n & \kappa_n & \kappa_n & \dots & \kappa_n \end{bmatrix}.$$
(6.77)

Матрица k – квадратная, симметричная относительно главной диагонали, порядок ее равен M – числу искомых усилий, \Im – количество элементов. Для рассматриваемой рамы (рис. 6.47, 6.48) матрицы жесткости отдельных стержней имеют вид

$$k_{1,2} = \frac{EJ}{4} \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} = i \begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix}, \qquad i = \frac{EJ}{4},$$
$$k_3 = \frac{4EJ}{8} \cdot 3 = 6i; \qquad k_4 = \frac{EJ}{4} \cdot 3 = 3i,$$

а матрица жесткости всех элементов будет такой:

 $\kappa = i \begin{bmatrix} 4 & 2 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$

6.5.5. Разрешающая система уравнений

Запишем еще раз три группы уравнений, отражающих три стороны задачи расчета упругих систем: статическую, геометрическую и физическую.

1. Уравнение равновесия (6.63)

$$P = A \cdot S$$

2. Уравнение неразрывности деформаций (6.71)

$$e = BZ = A^{T}Z$$

3. Обобщенный закон Гука для всей системы (6.76)

S = ke.

Если матрица *A* (6.64) квадратная и ^{det *A* ≠ 0}, то заданная система статически определима, и можно найти внутренние усилия

$$S = A^{-1}P$$
.

После этого решение задачи можно завершить. Если матрица A (6.65) прямоугольная, то при n > m система статически неопределима и, кроме уравнений равновесия (6.63), необходимо рассмотреть геометриче-

ские (6.71) и физические (6.76) уравнения. В системе (6.63), (6.71), (6.76) неизвестными являются векторы усилий S, деформаций e, перемещений Z. Для проверки прочности и жесткости необходимо и достаточно знать усилия и перемещения. Поэтому вектор "e" исключим, подставив (6.71) в (6.76):

$$S = KA^{\mathrm{T}}Z. \tag{6.78}$$

Формула (6.78) позволяет найти усилия *S* по известным перемещениям *Z*. Подставляя (6.78) в (6.63), получим

$$P = AkA^{\mathrm{T}}Z = KZ, \qquad (6.79)$$

где $K = AkA^{T}$ называется матрицей жесткости всей конструкции. Она устанавливает связь между внешними узловыми силами и перемещениями узлов. Матрица K – квадратная, симметричная, имеет порядок M, где M – число возможных перемещений узлов. Решение уравнения (6.79) дает

$$Z = K^{-1}P$$
, (6.80)

где κ^{-1} – обратная матрица, всегда существующая для геометрически неизменяемых систем.

Решение (6.80) имеет формальный смысл, так как получение обратной матрицы довольно трудоемкая процедура. Поэтому на практике и во всех вычислительных комплексах вектор Z получают непосредственным решением системы разрешающих уравнений (6.79). После определения вектора Z усилие определяются по (6.78). В методе перемещений необходимой и достаточной проверкой правильности решения является статическая проверка, т. е. проверка равновесия узлов системы. Матричный аналог статической проверки – уравнение равновесия (6.63), т. е. полученный вектор S надо умножить слева на статическую матрицу A и сравнить результат с вектором узловых сил.

При расчете на внеузловую нагрузку к расчетным усилиям надо добавить усилия от внеузловой нагрузки S_0 (6.61):

$$S_{0k} = kA^{T}Z + S_{0}.$$
 (6.81)

Матричное уравнение (6.79) эквивалентно системе канонических уравнений метода перемещений: каждый элемент k_{ij} матрицы жесткости k (6.77) равен коэффициенту r_{ij} , представляющему реактивное усилие в связи по направлению перемещения Z_i от перемещения $Z_j = 1$. Сравним формулу (6.81) с разрешающей формулой классического метода перемещений

$$M_{\rm 3K} = \sum M_i Z_i + M_P \,. \tag{6.82}$$

Очевидно, что формулы (6.81) и (6.82) эквивалентны с точностью до обозначений, если под S понимать изгибающие моменты в рамах. Кроме того, очевидно, что матрица \mathcal{KA}^{T} в (6.81) имеет смысл матрицы единичных усилий.

В конце этого подраздела изложим порядок расчета по ММП (матричный метод перемещений).

1. Выбираем основную систему метода перемещений (рис. 6.48, а). Строим расчетную схему (рис. 6.52), определяя направление неизвестных перемещений Z (рис. 6.48) и искомых усилий S (рис. 6.54).

2. В случае внеузловой нагрузки строим эпюру M_F (рис. 6.49), приводим нагрузки к узловым и строим векторы P (6.60), S_0 (6.61).

3. Строим статическую матрицу A (6.65) и матрицу жесткости всех элементов (6.77).

4. Выполняем матричные операции KA^{T} , $K = AKA^{T}$.

5. Решаем систему уравнений равновесия (6.79), находим вектор Z.

6. Определяем внутренние усилия (6.78).

7. Выполняем матричную проверку AS = P (6.63).

8. Окончательное значение усилий определяем по формуле (6.81).

9. По найденным усилиям строим соответствующие эпюры.

Пример. Рассчитать раму, приведенную на рис. 6.47. Вектор внешних сил – (6.60), рис. 6.52. Вектор грузовой эпюры – (6.61), рис. 6.49. Статическая матрица – (6.65). Матрица жесткости (см. п. 6.5.5)

$$\kappa = i \begin{bmatrix} 4 & 2 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad i = \frac{E_j}{4}.$$

Выполняем матричные операции

$$\mathcal{K}\mathcal{A}^{\mathrm{T}} = i \begin{pmatrix} 4 & 2 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \approx \begin{pmatrix} 0 & -0,25 \\ 1 & -0,25 \\ 0 & -0,25 \end{pmatrix} = i \begin{pmatrix} 2 & -1,5 \\ 4 & -1,5 \\ 6 & 0 \\ 0 & -0,75 \end{pmatrix},$$
$$\mathcal{K} = AkA^{\mathrm{T}} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -0,25 & 0 & -0,25 \end{pmatrix} \approx k \begin{pmatrix} 2 & -1,5 \\ 4 & -1,5 \\ 6 & 0 \\ 0 & 0,75 \end{pmatrix} = i \begin{pmatrix} 10 & -1,5 \\ -1,5 & 0,9375 \end{pmatrix},$$

Решаем уравнение

$$KZ = P$$

ИЛИ

$$10Z_1 - 1,5Z_2 = -11/i$$
$$-1.5Z_1 + 0.9375Z_2 = 7/i$$

Отсюда $Z_1 = 0.0263/i$, $Z_2 = 7.5088/i$.

Определяем внутренние усилия

$$S = \mathcal{K} \mathcal{A}^{\mathrm{T}} \mathcal{Z} = i \begin{pmatrix} 2 & -1.5 \\ 4 & -1.5 \\ 6 & 0 \\ 0 & -0.75 \end{pmatrix} \begin{pmatrix} 0.0263 \\ 7.5088 \end{pmatrix} \frac{1}{i} = \begin{pmatrix} -11,2106 \\ -11,158 \\ 0,1578 \\ -5,6316 \end{pmatrix},$$

Осуществляем матричную проверку: $A S \cong P$

$$AS = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -0.25 & -0.25 & 0 & -0.25 \end{pmatrix} \begin{pmatrix} -11.2106 \\ -11.1580 \\ 0.1578 \\ -5,6316 \end{pmatrix} = \begin{pmatrix} -11,002 \\ 7,00005 \end{pmatrix}.$$

Получаем практически точно вектор *Р* (6.60). Окончательные значения усилий определяем по формуле

 $S_{0k} = S + S_0 = (-11,2106 - 11,1580 0,1578 - 5,6316)^{T} +$

 $+(-5 \ 5 \ -24 \ 0)^{\mathrm{T}} = (-16,21 \ -6,16 \ -23,84 \ -5,63)^{\mathrm{T}}.$

По найденным значениям строим окончательную эпюру.

6.6. Общие положения метода конечных элементов

Матричный метод перемещений позволяет составить расчетный алгоритм вплоть до получения усилий во всех элементах рассматриваемой системы и поручить все вычисления ЭВМ. Но для этого вначале необходимо вручную составить исходные матрицы A (6.65), k (6.77) и векторы P (6.60), S_0 (6.61).

В методе конечных элементов (МКЭ) также получается разрешающая система уравнений KZ = P, но матрица жесткости K вычисляется не по известной формуле

$$K = A k A^{\mathrm{T}},$$

а путем суммирования матриц жесткости отдельных элементов K_{3} , т. е.

$$K = \sum_{\mathfrak{I}=1}^{n} K_{\mathfrak{I}},$$

где $K_{\mathfrak{H}} = (A \, k \, A^{\mathsf{T}})$, а после определения перемещений Z усилия вычисляются поэлементно по формуле

$$S_{\mathfrak{I}} = (k A^{\mathrm{T}})_{\mathfrak{I}} Z_{\mathfrak{I}},$$

где вектор усилий S_3 , матрица усилий $(k A^T)_3$ и вектор перемещений Z_3 относятся к элементу. Такой подход позволяет один раз получить матрицы жесткости типовых элементов, произвольно расположенных в пространстве, составить алгоритм расчета и программу, по которой ЭВМ выполнит всю работу по вычислению элементов матрицы K_3 , их суммированию, т. е. составлению ансамбля элементов. Название метода отражает его главную идею – представление конструкции как совокупности отдельных конечных элементов, соединенных между собой в узлах, в которых приложены внешние силы.

На плоскости типовые конечные элементы могут быть только трех типов:

- шарнирно-стержневой элемент;

– балочный защемленный элемент;

– балочный комбинированный элемент.

Любую самую сложную конструкцию на плоскости можно представить как совокупность названных элементов. Следовательно, задача состоит в построении матрицы жесткости K_3 для трех типовых элементов.

Отметим одну принципиальную особенность. В ММП (матричный метод перемещений) рамных систем, как и в методе перемещений, осевыми деформациями стержней пренебрегают. В основной системе закрепляют узлы от поворотов и вводят связи, препятствующие линейным перемещениям узлов соответствующей шарнирной схемы. В МКЭ этого сделать принципиально невозможно, так как при произвольном перемеще-

нии концов балочного элемента обязательно возникают осевые деформации. Следовательно, в основной системе МКЭ следует закреплять каждый узел как от угловых, так и от линейных перемещений, соответственно увеличивается число неизвестных перемещений. Поэтому результаты расчета по ММП и МКЭ в общем случае не должны совпадать, хотя для реальных конструкций, состоящих из элементов с большой осевой жесткостью, должны быть близки.

При построении матриц жесткости $K_{\mathfrak{I}} = (A k A^{\mathsf{T}})$ стержневых элементов в МКЭ, как и в ММП, удовлетворяются уравнения равновесия (6.63), физические уравнения (6.76), уравнения неразрывности (6.71), поэтому перемещения узлов системы, найденные из разрешающей системы уравнений KZ = P, будут точно отражать поле перемещений. Так же точно находятся деформации и усилия в элементах. Следовательно, МКЭ является точным методом расчета стержневых систем, естественно, в пределах точности гипотез, лежащих в основе расчета стержневых систем.

Точно такой же путь решения в МКЭ для систем из пластин, оболочек, объемных элементов. Конечными элементами для таких систем служат плоские треугольные, прямоугольные, изопараметрические (с криволинейными краями) элементы, либо объемные – тетраэдры, параллелепипеды с разным числом узловых точек.

При вычислении матриц жесткости континуальных элементов не удается получить точные решения, поэтому МКЭ для континуальных систем является приближенным методом. Повышение точности решения при расчете континуальных систем достигается за счет более мелкого разбиения конструкции на элементы или за счет применения элементов более высокой точности.

Приведем сравнительную таблицу алгоритмов ММП и МКЭ.

Таблица 6.2

ММП	МКЭ
1. Строятся вручную исходные матрицы A (6.65), k (6.77), векторы P (6.60), S ₀ (6.61)	1. Вводятся в машину координаты уз- лов X _i , Y _i . Задаются элементы по со- ответствующим узлам и их жестко- стям A, E, внешние воздействия (нагрузки, температурные, осадки опор)
2. Вычисляется матрица усилий <i>кА</i> ^т , матрица жесткости <i>К</i> = <i>АкА</i> ^т конструкции	2. Машина по стандартному алгоритму вычисляет матрицы усилий $(kA^{T})_{2}$, матрицы жесткости всех элементов $K_{2} = (AkA^{T})$ и записывает их на

Сравнение алгоритмов ММП и МКЭ

3. Решается система уравнений KZ = P, находится вектор Z	жесткий диск компьютера 3. Составляется матрица жесткости конструкции $K = \sum_{3=1}^{n} K_{3}$	
4. Определяются расчетные уси- лия $S = kA^{T}Z$	4. Решается система <i>KZ</i> = <i>P</i>	
5. Добавляются усилия от внеузловой нагрузки $S_{0k} = S + S_0$	5. Находятся усилия во всех элементах $S_{\mathfrak{P}} = (kA^{T})_{\mathfrak{P}}Z_{\mathfrak{P}}$	
	6. Добавляются усилия от внеузловой нагрузки $S_{3,0k} = S_3 + S_{0,3}$	

Несмотря на внешнюю схожесть алгоритмов расчета, методы различаются не только способом расчета – вручную или на машине. Главное отличие – в ММП исходные матрицы приходится строить вручную для каждой новой конструкции, в МКЭ же глобальная матрица жесткости конструкции получается простым суммированием по определенному правилу матриц жесткости всех элементов, вычисленных по стандартным алгоритмам, заложенным в машине.

6.6.1. Подготовка расчета. Ввод исходных данных

Требуется рассчитать произвольную плоскую стержневую конструкцию на действие силовых нагрузок, теплового воздействия, осадок опор. Введем последовательно все узлы конструкции по их координатам: узлами будем считать опоры, точки перелома стержней, шарниры, точки ступенчатого изменения жесткости, точки приложения сил или сосредоточенных моментов. Координаты узлов считываются с узлов растровой сетки или задаются с экрана.

Введем элементы по начальному узлу i и по конечному узлу j, предварительно назначая его жесткостные характеристики – модуль упругости E, площадь поперечного сечения A, момент инерции J. Заметим, что балочные элементы задаются узлами i, j, k, где третий узел k определяет плоскость элемента в пространстве. Единственное условие – узел k не должен лежать на линии i-j.

Программа тут же определяет его геометрические характеристики: длину $\ell = \sqrt{\Delta X^2 + \Delta Y^2}$, $\sin \alpha = \frac{\Delta Y}{\ell}$, $\cos \alpha = \frac{\Delta X}{\ell}$, $\Delta X = X_j - X_i$, $\Delta Y = Y_j - Y_i$. Здесь α – угол наклона элемента к горизонту.

Вводим узловые нагрузки – силы и сосредоточенные моменты, а также внеузловую нагрузку – равномерно распределенную нагрузку, действующую: q_1 – вдоль стержня от узла *i* к узлу *j*;

*q*₂ – в поперечном направлении в плоскости элемента;

*Q*₃ – в поперечном направлении из плоскости элемента.

6.6.2. Силовое воздействие

Расчетная схема элемента, эпюра усилий и узловая нагрузка приведены в табл. 6.3.

Таблица 6.3

Эпюры усилий и узловые нагрузки при силовых воздействиях

6.6.3. Тепловое воздействие

При изменении температуры крайних волокон стержневого элемента толщиной d на t_1 и $t_2 < t_1$ разложим, как обычно, тепловое воздействие на две составляющие: перепад температур $\Delta = t_1 - t_2$ и равномерный нагрев (охлаждение) всех волокон $t_{cp} = (t_1 + t_2)/2$. От равномерного нагрева на t_{cp} стержень длиной ℓ должен был бы удлиниться на $\Delta \ell = \alpha t_{cp} \ell$, где α – коэффициент линейного расширения.

Поскольку в основной системе МКЭ все узлы закреплены от перемещений, как угловых, так и линейных, стержень окажется сжатым силой N, укорочение от которой равно $\Delta \ell$, т. е.

$$N = \frac{EA}{\ell} \Delta \ell = \frac{EA}{\ell} \alpha t_{cp} \ell = \alpha EA t_{cp}.$$

При равномерном охлаждении, т. е. при $t_{cp} < 0$, стержень будет растянут такой же силой $N = \alpha EA t_{cp}$. В табл. 6.4 показаны расчетные схемы, а также эпюры S_0 продольных сил и узловые нагрузки от равномерного нагрева при $t_{cp} > 0$ и от равномерного охлаждения при $t_{cp} < 0$.

Таблица 6.4

Эпюры усилий и узловые нагрузки при воздействии температуры

От перепада температур Δt в стержнях возникнут изгибающие моменты, при этом растянутыми будут всегда менее нагретые волокна. В табл. 6.4 на схемах в) и г) показаны эпюры моментов и узловые нагрузки в балочном и комбинированном элементах высотой сечения d от перепада температур Δt .

6.6.4. Осадка опор

При заданной осадке опор все элементы, прикрепленные к ней, получают соответствующие деформации, в них возникают усилия, так как в основной системе МКЭ все узлы закреплены от перемещений. Так, от заданного линейного перемещения Δ одной из опор в направлении оси любого стержня он удлинится (укоротится) на такую же величину Δ , что вызовет в нем растягивающую (сжимающую) продольную силу $N = EA \Delta/\ell$, и соответствующие опорные реакции на концах. В табл. 6.5 приведены эпюры продольных усилий S_0 и соответствующие узловые нагрузки, возникающие в стержневых элементах любого типа от перемещения одной из опор вдоль оси стержня на Δ .

Таблица 6.5

Эпюры усилий и узловые нагрузки при осадке опор

Расчетная схема	Эпюра 5 ₀	Узловая нагрузка

На схеме б) в табл. 6.5 показаны эпюры моментов и соответствующие узловые нагрузки в балочных элементах при повороте опорного сечения на угол φ и от линейного смещения *с* в направлении нормали к оси стержня.

6.6.5. Матрицы жесткости типовых стержневых элементов

Построение матриц жесткости K_{\Im} типового элемента является центральной задачей метода конечных элементов. Эта матрица устанавливает связь между узловыми перемещениями и силами. Используем формулу матричного метода перемещений (6.79)

$$K_{\mathfrak{F}} = (A k A^{\mathrm{T}})_{\mathfrak{F}}$$

для отдельного элемента, рассматриваемого как целая конструкция. Здесь матрицы A и k – статическая матрица (см. п. 6.5.2) и матрица жесткости элемента (см. п. 6.5.4).

Рассмотрим вывод матриц жесткости типовых стержневых элементов.

Шарнирно-стержневой элемент (рис. 6.58)

Рис. 6.58. Схемы шарнирно-стержневого элемента

Для шарнирно-стержневого элемента (см. рис. 6.58, а) сначала построим расчетную схему (рис. 6.58, б), где стрелками указаны возможные локальные степени свободы, связанные с перемещениями $Z_1 - Z_4$ и соответствующими возможными внешними силами $P_1 - P_4$. Кроме того, в элементе возможно одно осевое усилие S_1 и соответствующая деформация ℓ_1 . Рассмотрев равновесие узлов (рис. 6.58, в), запишем соотношения между внешними и внутренними силами:

$$P_1 = -S_1 \cos \alpha$$
; $P_2 = -S_1 \sin \alpha$; $P_3 = S_1 \cos \alpha$; $P_4 = S_1 \sin \alpha$. (6.83)

Если систему (6.83) записать в матричном виде P = AS, то матрица **А** элемента будет

$$A = [-\cos\alpha - \sin\alpha \cos\alpha \sin\alpha]^{\mathrm{T}}.$$

Матрица жесткости шарнирно-стержневого элемента *k* была получена ранее в матричном методе перемещений (п. 6.2.4):

$$k = \left(\frac{EA}{\ell}\right). \tag{6.84}$$

Вычисляем матрицу единичных усилий

$$kA^{\mathrm{T}} = \frac{EA}{\ell} \left[-\cos\alpha - \sin\alpha \cos\alpha \sin\alpha \right].$$

Наконец, вычислим матрицу жесткости элемента К :

$$\kappa_{4x4}^{3} = \mathbf{A} \cdot \mathbf{K} \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} \kappa_{11} & \kappa_{12} & \kappa_{13} & \kappa_{14} \\ & \kappa_{22} & \kappa_{23} & \kappa_{24} \\ & & \kappa_{33} & \kappa_{44} \end{bmatrix} = \begin{bmatrix} \kappa_{ij} \end{bmatrix}, \quad (6.85)$$

где $K_{11} = \frac{EA}{\ell} \cos^2 \alpha$ и т. д.

Не вписанные элементы матрицы (6.85) симметричны относительно главной диагонали.

Балочный защемленный элемент (рис. 6.59)

Рис. 6.59. Схемы балочного защемленного элемента

Для балочного защемленного элемента, показанного на рис. 6.59, а, составим расчетную схему (рис. 6.59, б), где стрелками показаны шесть локальных степеней свободы $Z_1 - Z_6$ и соответствующие им возможные узловые силы $P_1 - P_6$. Засечками обозначены осевая сила S_1 и изгибающие моменты по концам S_2 и S_3 . На рис. 6.59, в отдельно указаны эти силы, а также возникающие по концам поперечные силы. Рассмотрим равновесие узлов *i* и *j* (рис. 6.59, г):

$$\sum M = 0; \quad P_1 = S_2;$$

Узел *i*
$$\sum X = 0; \quad P_2 = -S_1 \cos \alpha + \frac{S_2 + S_3}{\ell} \sin \alpha;$$

$$\sum Y = 0; \quad P_3 = -S_1 \sin \alpha - \frac{S_2 + S_3}{\ell} \cos \alpha;$$

$$\sum M = 0; \quad P_4 = S_3;$$

Узел *j*
$$\sum X = 0; \quad P_5 = S_1 \cos \alpha - \frac{S_2 + S_3}{\ell} \sin \alpha;$$

$$\sum Y = 0; \quad P_6 = S_1 \sin \alpha + \frac{S_2 + S_3}{\ell} \cos \alpha.$$
(6.86)

Запишем теперь матрицу *А* как матрицу коэффициентов системы уравнений (6.86):

		1	
	$-\cos \alpha$	$\sin \alpha / \ell$	$\sin \alpha / \ell$
	$-\sin \alpha$	$-\cos \alpha / \ell$	$-\cos \alpha / \ell$
A =			1
	$\cos \alpha$	$-\sin \alpha / \ell$	$-\sin \alpha / \ell$
	$\sin \alpha$	$\cos \alpha / \ell$	$\cos \alpha / \ell$

Матрица жесткости всех элементов *k* для балочного защемленного элемента при учете деформации растяжения-сжатия определится как ком-

бинация, или сумма матриц внутренней жесткости для шарнирного и балочного элементов матричного метода перемещений (6.73) (6.74):

	EA / <i>ℓ</i>		
<i>k</i> =		4 EJ /ℓ	2 EJ /ℓ
		2 EJ / ℓ	4 <i>EJ / ℓ</i>

Матрица единичных усилий вычисляется по формуле kA^{T} и имеет размер 3×6. Матрица жесткости $K = AkA^{T}$ имеет размер 6×6, симметрична относительно главной диагонали.

Балочный комбинированный элемент

Матрицы балочного комбинированного элемента (рис. 6.56) получаются совершенно так же, как и балочного защемленного (рис. 6.59, а), если в узле J поставить шарнир. Тогда степеней свободы будет 5, искомых усилий 2, матрица k будет иметь размер 5×5.

Пространственный защемленный элемент

Как известно, в жестком узле пространственной стержневой системы имеется 6 степеней свободы – 3 линейных перемещения и 3 поворота вокруг осей, поэтому стержень, соединяющий два узла, будет иметь 12 степеней свободы. Усилий в стержне, подлежащих определению, всего 6: нормальная сила S_1 , изгибающие моменты по концам из плоскости стержня S_2 и S_3 , изгибающие моменты в плоскости стержня S_4 и S_5 и крутящий момент S_6 . Статическая матрица размером 12×6 строится так же, как и для элемента на плоскости, а матрица жесткости k будет

k =	EA / <i>ℓ</i>					
		4 EJ ₂ / ℓ	2 EJ ₂ / ℓ			
		2 EJ ₂ / ℓ	4 EJ ₂ / ℓ			
				4 EJ ₃ / ℓ	2 EJ ₃ /ℓ	
				2 EJ ₃ /ℓ	4 EJ ₃ / ℓ	
						GJ ₁ / ℓ

Здесь J_1 – момент инерции при кручении, J_2 – момент инерции из плоскости элемента, J_3 – момент инерции в плоскости элемента, G – модуль сдвига.

Формирование матрицы жесткости *k* пространственного стержневого элемента проводится по тому же алгоритму, что и для элемента на плоскости.

6.6.6. Формирование матрицы жесткости конструкции

Ранее было показано (п. 6.5.5), что разрешающая система уравнений матричного метода перемещений KZ = P является системой канонических уравнений метода перемещений, следовательно, каждый компонент K_{ij} матрицы K является реакцией в i-й связи при перемещении j-й связи на единицу. Реакция в любом узле по направлению i-й связи, очевидно, складывается из реакций, возникающих во всех примыкающих к узлу элементах, по тому же направлению i. Следовательно, матрица жесткости системы K получается сложением матриц жесткости элементов K_3 , составляющих систему

$$K = \sum_{\mathfrak{I}=1}^{m} K_{\mathfrak{I}},$$

где *m* – число элементов.

Очевидно, матрица K квадратная, симметричная относительно главной диагонали, ее размер равен числу степеней свободы системы. Процедуру сложения проследим на простом примере рис. 6.60, где наглядно продемонстрируем процесс последовательного наполнения матрицы Kпутем вложения в нее матриц жесткости элементов K_{3} .

Рис. 6.60. Схема фермы

На рис. 6.60 цифрами в кружках обозначены узлы, стрелками и цифрами – глобальные степени свободы, всего 9. Ферма состоит из шарнирных элементов, локальные степени свободы для трех элементов показаны на рис. 6.61, а, б, в.

Рис. 6.61. Элементы фермы

Заготовим матрицу размером 9×9 со всеми компонентами, равными нулю (рис. 6.62).

Рис. 6.62. Схема матрицы размером 9х9

Берем первый элемент 1-2 (рис. 6.61, а). Узел 1 закреплен, поэтому компоненты K_{12} соответствуют локальным степеням свободы 1 и 2 (две первые строки и 2 первых столбца не используются). Локальные степени свободы 3, 4 соответствуют глобальным степеням 1 и 2, поэтому субматрица 3-4 помещается на пересечении 1-2 строк и столбцов матрицы K, как показано на рис. 6.62. Мы вложили в матрицу K только три матрицы из девяти, но, надеемся, главная идея усвоена.

6.6.7. Определение перемещений и усилий в элементах

После формирования матрицы жесткости системы K решается система линейных уравнений KZ = P и находится вектор Z, т. е. перемещения всех узлов.

Усилия в конструкции находятся поэлементно по формуле

$$\boldsymbol{S}_{\boldsymbol{\vartheta}} = \left(\boldsymbol{k} \boldsymbol{A}^{\mathrm{T}} \right)_{\boldsymbol{\vartheta}} \cdot \boldsymbol{Z}_{\boldsymbol{\vartheta}} \,. \tag{6.87}$$

Здесь матрица единичных усилий элемента (kA^{T}) была вычислена при формировании матрицы жесткости элемента $K_{3} = (AkA^{T})_{3}$. Вектор Z_{3} – это компоненты вектора Z, соответствующие локальным степеням свободы. Например, для элемента 3-6 фермы (рис. 6.62) составляющие формулы (6.87) будут

 $(\mathbf{k}\mathbf{A}^{\mathrm{T}})_{35} = (\mathbf{E}\mathbf{A}/\ell)_{35} [-\cos\alpha - \sin\alpha \cos\alpha \sin\alpha],$ $(\mathbf{Z})_{35} = (\mathbf{Z}_3 \, \mathbf{Z}_4 \, \mathbf{Z}_7 \, \mathbf{Z}_8)^{\mathrm{T}}.$

В результате умножения по формуле (6.87) вектора-строки на вектор-столбец получим усилие S_{35} – одно число, соответствующее осевой силе в элементе 3-5. Для балочных элементов в соответствии с рис. 6.59 S_1 – осевое усилие, S_2 и S_3 – моменты по концам стержня. Для комбинированного элемента S_1 – осевое усилие, S_2 – момент в заделке.

Для пространственного стержневого элемента согласно его матрице жесткости K имеем: S_1 – осевое усилие, S_2 и S_3 – изгибающие моменты из плоскости стержня, S_4 и S_5 – изгибающие моменты в плоскости стержня, S_6 – крутящий момент (см. п. 6.6.5). Поперечные силы определяются по формуле $Q_{ij} = -(M_i + M_j)/\ell$ в соответствии с принятым знаком для изгибающих моментов, когда концевые моменты вращают стержень по часовой стрелке (рис. 6.53).

Наконец, если было задано внеузловое воздействие типа распределенной нагрузки, температуры или осадки опор, то грузовые эпюры добавляются к расчетным по известной формуле

 $S_{0k} = S + S_0$.

РАЗДЕЛ 7

ОСОБЕННОСТИ РАСЧЕТА СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ БАЛОК, АРОК, ФЕРМ

В инженерной практике в качестве несущих конструкций часто используются статически неопределимые балки, арки, фермы. Особенностью работы статически неопределимых балок, арок и ферм, по сравнению со статически определимыми, является то (см. разд. 6), что усилия в них зависят от жесткости элементов. В этих системах возникают также усилия от температуры, осадки опор и неточности изготовления отдельных элементов.

7.1. Расчет неразрезных балок на упруго-смещающихся опорах на силовые воздействия

Неразрезной балкой называется такая балка, которая перекрывает два или более пролетов и проходит через свои опоры, не прерываясь нигде

шарнирами или разрезами. Характерным отличием неразрезной балки от разрезной является то, что нагрузка, стоящая в любом ее пролете, изгибает балку на протяжении всех пролетов, создавая плавную упругую линию.

В курсе сопротивления материалов рассматривалась неразрезная балка на абсолютно жестких опорах. Здесь мы рассмотрим неразрезные балки на упруго-смещающихся опорах. Упруго-смещающейся мы будем называть такую опору, перемещение которой пропорционально действующему на нее давлению. Например: длинные колонны, на которых лежит неразрезная балка; поперечные балки проезжей части металлического моста, на которых лежат продольные неразрезные балки; понтоны, которые служат опорами наплавного моста; рельс железнодорожного пути, лежащий на шпалах, которые в свою очередь лежат на более или менее упругом полотне.

Будем считать пролеты, а также сечения неразрезной балки известными. Упругие характеристики опор (коэффициенты податливости) C_i будем также считать известными. За неизвестные примем опорные изгибающие моменты (рис. 7.1). За основную систему примем балку, разделенную шарнирами на ряд однопролетных балок. В основной системе построим эпюры изгибающих моментов, вызванных единичными значениями неизвестных M_{n-2} , M_{n-1} , M_n , M_{n+1} , M_{n+2} , и эпюру моментов от внешней нагрузки M_F .

Легко заметить, что перелом упругой линии на опоре n вызывается только моментами $M_{n-2}, M_{n-1}, M_n, M_{n+1}, M_{n+2}$ и внешней нагрузкой, расположенной на пролетах $l_{n-1}, l_n, l_{n+1}, l_{n+2}$. Действительно, любой из этих факторов вызывает в основной системе реакции по крайней мере в одной из опор n-1, n, n+1, а удлинение или укорочение последних, очевидно, вызывает взаимный поворот обоих сечений, шарнирно связанных между собой на опоре n. Моменты и внешние нагрузки, расположенные более далеко, не вызывают в опорах n-1, n, n+1 никаких усилий.

Каноническое уравнение для *n*-й опоры (рис. 7.1,а) имеет вид

$$M_{n-2}\delta_{n,n-2} + M_{n-1}\delta_{n,n-1} + M_n\delta_{n,n} + M_{n+1}\delta_{n,n+1} + M_{n+2}\delta_{n,n+2} + \Delta_{nF} = 0.$$
(7.1)

Это уравнение носит название уравнения пяти моментов.

Выразим в буквенном виде коэффициенты этого уравнения. Примем во внимание изгибающие моменты в балке и реакции в опорах (см. п. 6.1.4):

$$\begin{split} \delta_{n,n-2} &= \frac{C_{n-1}}{I_{n-1}I_n} ; \quad \delta_{n,n-1} = \frac{I_n}{6EJ_n} - \frac{C_{n-1}}{I_n} \left(\frac{1}{I_{n-1}} + \frac{1}{I_n}\right) - \frac{C_n}{I_n} \left(\frac{1}{I_n} + \frac{1}{I_{n+1}}\right); \\ \delta_{n,n} &= \frac{I_n}{3EJ_n} + \frac{I_{n+1}}{3EJ_{n+1}} + \frac{C_{n-1}}{I_n^2} + C_n \left(\frac{1}{I_n} + \frac{1}{I_{n+1}}\right)^2 + \frac{C_{n+1}}{I_{n+1}^2}; \end{split}$$
(7.2)
$$\delta_{n,n+1} &= \frac{I_{n+1}}{6EJ_{n+1}} - \frac{C_n}{I_{n+1}} \left(\frac{1}{I_n} + \frac{1}{I_{n+1}}\right) - \frac{C_{n+1}}{I_{n+1}} \left(\frac{1}{I_{n+1}} + \frac{1}{I_{n+2}}\right); \quad \delta_{n,n+2} &= \frac{C_{n+1}}{I_{n+1}I_{n+2}}; \\ \Delta_{nF} &= \frac{B_n^{\Phi}}{EJ_n} + \frac{A_{n+1}^{\Phi}}{EJ_{n+1}} + \frac{C_{n-1}}{I_n}R_{n-1} - C_nR_n \left(\frac{1}{I_n} + \frac{1}{I_{n+1}}\right) + \frac{C_{n+1}}{I_{n+1}}R_{n+1}, \end{split}$$

Рис. 7.1. Основная система неразрезной балки на упруго-смещающихся опорах (а), единичные $M_{n-2}, M_{n-1}, M_n, M_{n+1}, M_{n+2}$ и грузовая M_F эпюры (б)

где R_{n-1}, R_n, R_{n+1} – реакции опор n-1, n, n+1 (рис. 7.1), вызываемые в основной системе внешней нагрузкой; B_n^{Φ} и A_{n+1}^{Φ} – фиктивные реакции опоры $N_B N_{-M}$ и N+1 - м пролетах.

Чтобы найти фиктивные реакции, необходимо в основной системе от заданной нагрузки построить эпюру моментов. Построенную эпюру моментов следует принять за фиктивную нагрузку. Направлять фиктивную нагрузку следует к оси балки. От этой нагрузки и находятся фиктивные реакции. В табл. 7.1 приведены готовые формулы для нахождения фиктивных реакций.

Таблица 7.1

№ ПП	Схема балки	Фиктивные реакции	
1	A F B mmmmul vl mmmm	$\mathcal{A}^{\Phi} = \frac{FI^2}{6} uv(1+v),$ $\mathcal{B}^{\Phi} = \frac{FI^2}{6} uv(1+u)$	
2	A B mmmmmul vl mmmm l	$A^{\Phi} = -\frac{MI}{6}(1 - 3v^2),$ $B^{\Phi} = \frac{MI}{6}(1 - 3u^2)$	
3	$\begin{array}{c} q \\ A & & & & \\ \hline \\ mnmmm & & \\ mnmmm & & \\ \end{array}$	$A^{\Phi} = B^{\Phi} = \frac{ql^3}{24}$	
4	$\begin{array}{c c} q \\ A \\ \hline \\ mmmmu \\ u \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$A^{\Phi} = \frac{ql^3}{24}u^2(2-u)^2,$ $B^{\Phi} = \frac{ql^3}{24}u^2(2-u^2)$	
5	$\begin{array}{c} q \\ \downarrow \\ mmmmul \\ l \\$	$A^{\Phi} = \frac{ql^3}{24} v^2 (2 - v^2),$ $B^{\Phi} = \frac{ql^3}{24} v^2 (2 - v)^2$	
6	$\begin{array}{c c} q \\ \hline \\ A \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\mathcal{A}^{\Phi} = \frac{ql^3}{24} \Big[1 - u_1^2 (2 - v_1)^2 - v_2^2 (2 - v_2^2) \Big],$ $\mathcal{B}^{\Phi} = \frac{ql^3}{24} \Big[1 - u_1^2 (2 - v_1^2) - v_2^2 (2 - v_2)^2 \Big]$	

Формулы для определения фиктивных опорных реакций

Число уравнений (7.1) равно числу неизвестных. При этом первое и последнее уравнения содержат по три неизвестных момента, второе и предпоследнее – по четыре, все остальные уравнения содержат по пять неизвестных.

Если балка имеет постоянное сечение и равные пролеты, а опоры – постоянный коэффициент податливости, то уравнение пяти моментов принимает вид

$$M_{n-2}\frac{C}{l^{2}} + M_{n-1}\left(\frac{l}{6EJ} - \frac{4C}{l^{2}}\right) + 2M_{n}\left(\frac{l}{3EJ} + \frac{3C}{l^{2}}\right) + M_{n+1}\left(\frac{l}{6EJ} - \frac{4C}{l^{2}}\right) + M_{n+2}\frac{C}{l^{2}} + \frac{B_{n}^{\Phi} + A_{n+1}^{\Phi}}{EJ} + \frac{C}{l}(R_{n-1} - 2R_{n} + R_{n+1}) = 0.$$
(7.3)

Умножим почленно полученное уравнение на $\frac{6EJ}{I}$ и обозначим

$$\Psi = \frac{6EJC}{l^3}.$$
 (7.4)

В результате получим следующее уравнение:

$$M_{n-2}\psi + M_{n-1}(1-4\psi) + 2M_n(2+3\psi) + M_{n+1}(1-4\psi) + M_{n+2}\psi = = -\frac{6(B_n^{\Phi} + A_{n+1}^{\Phi})}{I} - \psi I(R_{n-1} - 2R_n + R_{n+1}).$$
(7.5)

В случае $C_i = 0$ балка превращается в неразрезную балку на жестких опорах. Коэффициенты $\delta_{n,n-2}$ и $\delta_{n,n+2}$ (7.2) становятся равными нулю, и уравнение пяти моментов (7.1) переходит в уравнение трех моментов:

$$M_{n-1}I_n + 2M_n(I_n + I_{n+1}) + M_{n+1}I_{n+1} = -6(B_n^{\Phi} + A_{n+1}^{\Phi}).$$
(7.6)

Для равных пролетов $I_n = I_{n+1} = I$ получим из (7.6)

$$I(M_{n-1} + 4M_n + M_{n+1}) = -6(B_n^{\Phi} + A_{n+1}^{\Phi}).$$
(7.7)

Если опорные моменты найдены, то можно определить изгибающий момент в сечении между опорами:

$$M_{x} = M_{x}^{0} + M_{n} \frac{x}{l_{n}} + M_{n-1} \frac{l_{n} - x}{l_{n}}, \qquad (7.8)$$

поперечную силу

$$Q_x = Q_x^0 + \frac{M_n - M_{n-1}}{l_n}$$
(7.9)

и опорную реакцию на любой опоре

$$R_n = R_n^0 + \frac{M_{n+1} - M_n}{I_{n+1}} + \frac{M_{n-1} - M_n}{I_n}.$$
 (7.10)

Прогиб на *n*-й опоре равен произведению величины реакции (7.10) на коэффициент податливости опоры.

В формулах (7.8) – (7.10) обозначено: M_X^0 , Q_X^0 – изгибающий момент и поперечная сила в сечении X в основной системе; R_n^0 – опорная реакция

на *п*-й опоре в основной системе от нагрузки, приложенной к *I_n* и *I_{n+1}* пролетам.

Опорные моменты M_{n-1}, M_n, M_{n+1} подставляются в формулы (7.8) - (7.10) со своими знаками.

Рассмотрим пример расчета неразрезной балки на упруго-смещающихся опорах (рис. 7.2, а, б).

Рис. 7.2. К расчету неразрезной балки на упруго-смещающихся опорах

Исходные данные: коэффициент податливости $C = 3.2 \cdot 10^{-4} \text{ м/кH}$; модуль упругости материала балки $E = 30 \cdot 10^{6} \text{ кH/m}^{2}$; жесткость балки $EJ = 30 \cdot 10^{6} \frac{1 \cdot 1}{3 \cdot 8 \cdot 12} = \frac{5}{48} \cdot 10^{6} \text{ кH} \cdot \text{м}^{2}$; коэффициент Ψ (7.4)

$$\psi = \frac{6 \cdot 5 \cdot 10^6 \cdot 3.2 \cdot 10^{-4}}{48 \cdot 10^3} \approx 0.2.$$

Составим систему уравнений пяти моментов (7.5) (основная система показана на рис. 7.2, в; фиктивные реакции – на рис. 7.2, г; реакции опор от заданной нагрузки – на рис. 7.2, д):

$$2\boldsymbol{M}_{1}(2+3\psi) + \boldsymbol{M}_{2}(1-4\psi) = -\frac{6\cdot\frac{10^{4}}{24}}{10} - \psi\cdot10(-2\cdot50+50);$$

$$\boldsymbol{M}_{1}(1-4\psi) + 2\boldsymbol{M}_{2}(2+3\psi) = -\frac{6\cdot\frac{10^{4}}{24}}{10} - \psi\cdot10(-2\cdot50+50)$$

В результате решения этой системы уравнений получаем

$$M_2 = M_1 = -\frac{250(1-2\psi)[2(2+3\psi)-(1-4\psi)]}{4(2+3\psi)^2 - (1-4\psi)^2}$$

При $\Psi = 0,2$ $M_2 = M_1 = -28 \,\mathrm{kH} \cdot \mathrm{M}$. При $\Psi = 0$ (балка на абсолютно жестких опорах) $M_2 = M_1 = -50 \,\mathrm{kH} \cdot \mathrm{M}$.

Эпюра моментов построена на рис. 7.2, е. Следует обратить внимание на значительное перераспределение усилий (моментов) в балке на абсолютно жестких опорах (рис. 7.2, е, пунктир) по сравнению с балкой на упруго-смещающихся опорах: увеличились опорные моменты и уменьшились пролетные.

7.2. Расчет неразрезных балок на упруго-смещающихся опорах на температурные воздействия

Предположим, что неразрезная балка подвергается действию температуры. Схема балки в основной системе изображена на рис. 7.3, а.

Рис. 7.3. К расчету балки на упруго-смещающихся опорах на температурные воздействия

В этом случае уравнение пяти моментов записывается следующим образом:

$$M_{n-2}\delta_{n,n-2} + M_{n-1}\delta_{n,n-1} + M_n\delta_{n,n} + M_{n+1}\delta_{n,n+1} + M_{n+2}\delta_{n,n+2} + \Delta_{nt} = 0.$$
(7.11)

Отличие от системы (7.1) состоит в том, что вместо свободного члена Δ_{nF} здесь стоит член Δ_{nt} , представляющий собой температурное перемещение в основной системе (см. п. 5.6):

$$\Delta_{nt} = \sum \int N_n \alpha t \, \mathrm{d}s + \sum \int \frac{M_n \alpha t'}{h} \, \mathrm{d}s.$$
 (7.12)

Так как в рассматриваемой конструкции продольная сила отсутствует, то формула (7.12) приобретает следующий вид:

$$\Delta_{nt} = \sum \int \frac{M_n \alpha t'}{h} \mathrm{d}s = \sum \frac{\alpha t'}{h} \omega_M . \qquad (7.13)$$

Эпюра M_n изображена на рис. 7.3, б. Ее площадь ω_M может быть легко подсчитана. Предположим, что температура искривляет балку выпуклостью вниз (т. е. растянутые волокна в балке от силовых воздействий $M_n = 1$ и от действия температуры совпадают). Это, как известно (см. п. 5.6), позволяет в формуле (7.13) принять знак плюс. Кроме того, предположим, что балка имеет постоянную высоту сечения h. Тогда

$$\Delta_{nt} = \frac{\alpha t'}{h} \left(\frac{l_n}{2} \right) + \frac{\alpha t'}{h} \left(\frac{l_{n+1}}{2} \right) = \frac{\alpha t'}{2h} \left(l_n + l_{n+1} \right).$$
(7.14)

При одинаковых пролетах балки и постоянных коэффициентах податливости уравнение пяти моментов запишется как

$$M_{n-2}\psi + M_{n-1}(1-4\psi) + 2M_n(2+3\psi) + M_{n+1}(1-4\psi) + M_{n+2}\psi = -\frac{6EJ \alpha t'}{h}.$$
(7.15)

Составив систему уравнений (7.15) и решив ее, найдем опорные моменты. Далее можем определить моменты в сечениях между опорами:

$$M_{x} = M_{n} \frac{x}{l_{n}} + M_{n-1} \frac{l_{n} - x}{l_{n}}.$$
 (7.16)

После этого можно построить эпюру поперечных сил:

$$Q_{x} = \frac{M_{n} - M_{n-1}}{I_{n}}$$
(7.17)

и найти все опорные реакции по формуле

$$R_n = \frac{M_{n+1} - M_n}{I_{n+1}} + \frac{M_{n-1} - M_n}{I_n}.$$
 (7.18)

Для примера используем балку, показанную на рис. 7.2. Будем считать, что балка находится под воздействием температур $t_{\rm BH}$ и $t_{\rm H}$, $t' = |t_{\rm BH} - t_{\rm H}|$. Запишем систему уравнений пяти моментов (7.15):

$$2M_{1}(2+3\psi) + M_{2}(1-4\psi) = -\frac{6EJ \alpha t'}{h};$$
$$M_{1}(1-4\psi) + 2M_{2}(2+3\psi) = -\frac{6EJ \alpha t'}{h}.$$

Решив эту систему, найдем

$$M_1 = M_2 = -\frac{6EJ \alpha t'(3+10\psi)}{h[4(2+3\psi)^2 - (1-4\psi)^2]}.$$

При $\Psi = 0$ (балка на жестких опорах)

$$\boldsymbol{M}_1 = \boldsymbol{M}_2 = -\frac{6}{5} \frac{\boldsymbol{E} \boldsymbol{J} \, \alpha \, \boldsymbol{t}'}{\boldsymbol{h}}.$$

При $\Psi = 0,2$ (следуя примеру в п. 7.1)

$$\boldsymbol{M}_1 = \boldsymbol{M}_2 = -\frac{10}{9} \frac{\boldsymbol{E} \boldsymbol{J} \, \alpha \, \boldsymbol{t}'}{\boldsymbol{h}}$$

Как видим, в балке на упруго-смещающихся опорах опорные моменты уменьшились на 7,5 % (при силовом нагружении это число равнялось 44 %, см. рис. 7.2, е).

7.3. Расчет неразрезных балок на упруго-смещающихся опорах на вынужденные смещения опорных или других связей

Вынужденное смещение опор имеет для неразрезных конструкций серьезное значение. Если балка с прямой осью прикрепляется к плохо снивелированным опорам, то она при этом изгибается, и в ней возникает напряженное состояние. То же самое происходит тогда, когда под влиянием подмыва опор, плохого качества грунта и т.п. опорные точки оказываются расположенными не на одной прямой (рис. 7.4, а, в).

Уравнение (7.1) для рассматриваемого случая имеет следующий вид:

$$M_{n-2}\delta_{n,n-2} + M_{n-1}\delta_{n,n-1} + M_n\delta_{n,n} + M_{n+1}\delta_{n,n+1} + M_{n+2}\delta_{n,n+2} + \Delta_{nc} = 0, \quad (7.19)$$

где Δ_{nc} – перемещение по направлению неизвестной M_n , которое возникает в основной системе под влиянием просадки опор. Эта величина определяется, как известно (см. п. 5.7), так:

$$\Delta_{nc} = -\sum R \Delta \,. \tag{7.20}$$

Рис. 7.4. К расчету неразрезных балок на упруго-смещающихся опорах на просадку опор

Здесь R – реакции в связях n-1, n, n+1, вызываемые $M_n = 1$ (см. рис. 7.4, б); Δ – заданные смещения связей Y_{n-1}, Y_n, Y_{n+1} (рис. 7.4, в);

$$\Delta_{nc} = -\left(\frac{y_n - y_{n-1}}{l_n} - \frac{y_{n+1} - y_n}{l_{n+1}}\right) = -(tg\theta_n - tg\theta_{n+1}).$$

Ввиду малости углов, $tg \theta_n = \theta_n$, $tg \theta_{n+1} = \theta_{n+1}$. Тогда

 $\Delta_{nc} = \theta_{n+1} - \theta_n.$

Углы наклона пролетов I_n и I_{n+1} будем считать положительными в том случае, когда они направлены по часовой стрелке.

При одинаковых пролетах и постоянных коэффициентах податливости уравнение пяти моментов принимает вид

$$M_{n-2}\psi + M_{n-1}(1-\psi) + 2M_n(2+3\psi) + M_{n+1}(1-4\psi) + M_{n+2}\psi = = -\frac{6EJ}{I}(\theta_{n+1} - \theta_n).$$
(7.21)

После определения опорных моментов построение эпюр M и Q может быть произведено по формулам (7.16) и (7.17), а величины опорных реакций могут быть определены по зависимости (7.18).

По традиции, принятой в этом подразделе, приведем пример. Возьмем снова балку из примера на рис. 7.2 (рис. 7.5, а, б). Будем предполагать, что упруго-смещающиеся опоры получили вынужденные смещения (рис. 7.5, в).

Рис. 7.5. К расчету неразрезной балки на упруго-смещающихся опорах на заданное перемещение связей

Составим систему уравнений пяти моментов:

$$2M_1(2+3\psi) + M_2(1-4\psi) = -\frac{6EJ}{10} \left(-\frac{3}{400} - \frac{1}{100} \right);$$

$$M_1(1-4\psi) + 2M_2(2+3\psi) = -\frac{6EJ}{10} \left(-\frac{1}{400} - \frac{3}{400} \right).$$

Решение этой системы будет таким:

$$M_{1} = -\frac{EJ \cdot 10^{-3} [6(1 - 4\psi) - 21(2 + 3\psi)]}{4(2 + 3\psi)^{2} - (1 - 4\psi)^{2}};$$
$$M_{2} = \frac{EJ \cdot 10^{-3} [12(2 + 3\psi) - 10.5(1 - 4\psi)]}{4(2 + 3\psi)^{2} - (1 - 4\psi)^{2}}.$$

При $EJ = \frac{5}{48} \cdot 10^6 \text{ кH} \cdot \text{м}^2 \text{ и } \psi = 0.2 \text{ имеем}$ $M_1 = 0.18 \cdot 10^3 \text{ кH} \cdot \text{м}; M_2 = 0.11 \cdot 10^3 \text{ кH} \cdot \text{м}.$ При $EJ = \frac{5}{48} \cdot 10^6 \text{ кH} \cdot \text{м}^2 \text{ и } \psi = 0$

$$M_1 = 0.25 \cdot 10^3 \text{ kH} \cdot \text{m}; \quad M_2 = 0.09 \cdot 10^3 \text{ kH} \cdot \text{m}.$$

На рис. 7.5, г показаны эпюры моментов (пунктиром – для неразрезной балки на абсолютно жестких опорах, в скобках – соответствующие ординаты).

7.4. Линии влияния для балки на упруго-смещающихся опорах

Построение линии влияния (л.в.) опорных моментов производится так: груз F = 1 ставится последовательно на каждом пролете на расстоянии uI_n от левой опоры и vI_n – от правой (рис. 7.6; табл. 7.1, схема 1). Для каждой точки деления пролета находятся фиктивные реакции B^{Φ} и A^{Φ} (табл. 7.1) и реакции V и U.

Рис. 7.6. К построению линий влияния

Затем каждый раз решается соответствующая система уравнений пяти моментов (7.1). В результате определяются ординаты искомой линии влияния. Линии влияния балки на упруго-смещающихся опорах отличаются от соответствующих графиков, относящихся к балке на жестких опорах. Ординаты линии влияния балки на упруго-смещающихся опорах не равны нулю на опорах, в отличие от ординат линии влияния балки на жестких опорах. Примерный вид линии влияния опорного изгибающего момента показан на рис. 7.7. Вообще же ее очертание, а также знаки могут изменяться в зависимости от соотношения длин пролетов, от их жесткостей и коэффициентов податливости опор.

Рис. 7.7. Примерный вид линии влияния опорного момента *М*₂

Когда линии влияния опорных моментов построены, линии влияния изгибающих моментов в сечении между опорами, линии влияния поперечных сил и линии влияния опорных реакций могут быть построены по тем же формулам, что и для балки на жестких опорах:

л.в.
$$M_{X} = \pi.B. M_{X}^{0} + \pi.B. M_{n} \frac{X}{I_{n}} + \pi.B. M_{n-1} \frac{I_{n} - X}{I_{n}};$$

л.в. $Q_{X} = \pi.B. Q_{X}^{0} + \pi.B. M_{n} \frac{1}{I_{n}} - \pi.B. M_{n-1} \frac{1}{I_{n}};$
(7.22)
п.B. $R_{n} = \pi.B. R_{n}^{0} + \pi.B. M_{n+1} \frac{1}{I_{n+1}} - \pi.B. M_{n} \left(\frac{1}{I_{n+1}} + \frac{1}{I_{n}}\right) + \pi.B. M_{n-1} \frac{1}{I_{n}}.$

Линии влияния M_x^0 , Q_x^0 , R_n^0 в основной системе для пролета I_n показаны на рис. 7.8.

Рис. 7.8. Линии влияния M_x^0 , Q_x^0 , R_n^0 в основной системе балки на упруго-смещающихся опорах

Предельным случаем неразрезной балки на упруго-смещающихся опорах является балка, расположенная на «винклеровском» упругом основании (см. курс «Сопротивление материалов», разд. «Расчет балок на упругом основании»). Такое упругое основание балки можно рассматривать как совокупность бесконечного множества не связанных друг с другом упругих опорных стержней, отстоящих друг от друга на расстояния $d \times$. Податливость основания характеризуется величиной $C d \times$, т. е. осадкой среды под влиянием равномерно распределенного давления интенсивности единица.

Дифференциальное уравнение, характеризующее упругую линию балки, лежащей на упругом основании, имеет вид

$$\frac{\mathrm{d}^4 y}{\mathrm{d} x^4} + \frac{\kappa}{EJ} y = q,$$

где К – коэффициент жесткости основания (величина, обратная коэффициенту податливости), **9** – нагрузка на балку.

7.5. Расчет двухшарнирных арок

Двухшарнирная арка представляет собой геометрически неизменяемую систему, имеющую вид кривого бруса, опирающегося на две шарнирно-неподвижные опоры (рис. 7.9, а).

Рис. 7.9. Схемы двухшарнирных арок

Разновидностью двухшарнирной арки является двухшарнирная арка с затяжкой (рис. 7.9, б). Затяжка играет роль горизонтального опорного стержня. В такой системе, в отличие от арки без затяжки, при действии вертикальной нагрузки на опоры передаются только вертикальные усилия, а распор погашается внутри самого сооружения (затяжкой).

Арки, показанные на рис. 7.9, а,б, статически неопределимы. Число лишних связей найдем по формуле (1.4). В обеих системах

$$\Pi = 3K - III = 3 \cdot 3 - 8 = 1$$
.

Расчет арок произведем методом сил. Рассмотрим вначале арку, показанную на рис. 7.9, а. Основная система этой арки и единичные эпюры показаны на рис. 7.10.

Рис. 7.10. Основная система двухшарнирной арки и эпюры M_1, N_1, Q_1 от усилия $X_1 = 1$

Каноническое уравнение метода сил имеет следующий вид:

$$X_1 \delta_{11} + \Delta_{1F} = 0. (7.23)$$

Для определения коэффициента δ_{11} и свободного члена Δ_{1F} воспользуемся формулой (5.22):

$$\delta_{11} = \int_{A}^{B} y^2 \frac{\mathrm{d}s}{EJ} + \int_{A}^{B} \cos^2 \varphi \frac{\mathrm{d}s}{EA} + \int_{A}^{B} \mu \sin^2 \varphi \frac{\mathrm{d}s}{GA}.$$
(7.24)

Отметим, что для принятой системы координат (рис. 7.10) на участке CB $\sin \phi$ отрицателен, а на участке AC – положителен; $\cos \phi$ положителен на участках AC и CB.

Прежде чем найти свободный член уравнения (7.23), вспомним (см. разд. 4), что аналитические выражения для моментов, продольных и поперечных сил в основной системе от внешней вертикальной нагрузки равны:

$$M_{X} = M_{X}^{0}; \quad N_{X} = -Q_{X}^{0} \sin \varphi_{X}; \quad Q_{X} = Q_{X}^{0} \cos \varphi_{X}, \quad (7.25)$$

где M_x^0 , Q_x^0 – балочные изгибающие моменты и поперечные силы.

Следуя (5.22), получим

$$\Delta_{1F} = \int_{A}^{B} y \mathcal{M}_{x}^{0} \frac{\mathrm{d}s}{EJ} + \int_{A}^{B} Q_{x}^{0} \sin \varphi_{x} \cos \varphi_{x} \frac{\mathrm{d}s}{EA} - \int_{A}^{B} Q_{x}^{0} \sin \varphi_{x} \cos \varphi_{x} \frac{\mu \mathrm{d}s}{GA}.$$
 (7.26)

Для вычисления интегралов, входящих в уравнения (7.24) и (7.26), поступим следующим образом. Пролет арки разобьем на *n*-ное количество равных отрезков. В пределах каждого отрезка ось арки считаем прямолинейной (рис. 7.11).

Рис. 7.11. Схема разбивки пролета арки на конечное число отрезков

Теперь формулы для определения перемещений δ_{11} и Δ_{1F} приобретают следующий вид:

$$EJ_{0}\delta_{11} = \sum_{i=1}^{n} y_{i}^{2} \Delta S_{i}' + \sum_{i=1}^{n} \cos^{2} \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} + \sum_{i=1}^{n} \sin^{2} \varphi_{i} \frac{\mu EJ_{0}}{GA_{i}} \Delta S_{i} ; \quad (7.27)$$
$$EJ_{0}\Delta_{1F} = -\sum_{i=1}^{n} y_{i} M_{i}^{0} \Delta S_{i}' + \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} - \sum_{i=1}^{n} Q_{i}^{0} \Delta S_{i} - \sum_{$$

$$-\sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{\mu E J_{0}}{G A_{i}} \Delta s_{i} , \qquad (7.28)$$

где EJ_0 – изгибная жесткость участка арки, к которой приводятся жесткости остальных участков; $\Delta S'_i$ – приведенная длина *i*-го участка, $\Delta S'_i = \frac{J_0}{J_i} \Delta S_i$; E, G – соответственно модуль упругости и модуль сдвига материала, из которого выполнена арка (G = E/2(1 + v)); μ – коэффициент формы сечения (для прямоугольного сечения $\mu = 1.2$, для кругового $\mu = 32/27$, для прокатных двутавровых профилей можно приближенно принять $\mu = A/A_s$, где A_s – площадь вертикальной стенки).

Для двухшарнирной арки с затяжкой, расположенной на уровне опор **А** и **В**, формула (7.28) остается без изменений, а уравнение (7.27) приобретает следующий вид:

$$EJ_{0}\delta_{11} = \sum_{i=1}^{n} y_{i}^{2} \Delta s_{i}' + \sum_{i=1}^{n} \cos^{2} \varphi_{i} \frac{J_{0}}{A_{i}} \Delta s_{i} + \sum_{i=1}^{n} \sin^{2} \varphi_{i} \frac{\mu EJ_{0}}{GA_{i}} \Delta s_{i} + \frac{EJ_{0}}{E_{3}A_{3}} I, (7.29)$$

где E_3A_3 – соответственно модуль упругости материала затяжки и площадь поперечного сечения затяжки.

Если затяжка расположена не на уровне опор (рис. 7.12), то для определения перемещений δ_{11} и Δ_{1F} следует в формулах (7.24), (7.26) изменить пределы интегрирования от **E** до **D** (рис. 7.12) и аналитические выражения для усилий представить таким образом:

С учетом сказанного

$$EJ_{0}\delta_{11} = \sum_{j=1}^{m} (y_{j} - d)^{2} \Delta s_{j}' + \sum_{j=1}^{m} \cos^{2} \varphi_{j} \frac{J_{0}}{A_{j}} \Delta s_{j} + \sum_{j=1}^{m} \sin^{2} \varphi_{j} \frac{\mu EJ_{0}}{GA_{j}} \Delta s_{j} + \frac{EJ_{0}}{E_{3}} A_{3}'_{3};$$

$$EJ_{0}\Delta_{1F} = -\sum_{j=1}^{m} (y_{j} - d) M_{j}^{0} \Delta s_{j}' + \sum_{j=1}^{m} Q_{j}^{0} \sin \varphi_{j} \cos \varphi_{j} \frac{J_{0}}{A_{j}} \Delta s_{j} - \sum_{j=1}^{m} Q_{j}^{0} \sin \varphi_{j} \cos \varphi_{j} \frac{\mu EJ_{0}}{GA_{j}} \Delta s_{j},$$

$$(7.30)$$

где *m* – число участков, на которые разбита затяжка.

Рис. 7.12. Основная система двухшарнирной арки с повышенной затяжкой

При расчете двухшарнирной арки на температурные воздействия каноническое уравнение имеет вид

$$X_1 \delta_{11} + \Delta_{1t} = 0, \qquad (7.31)$$

где Δ_{1t} определяется в соответствии с формулой (5.29) при $t' = (t_{\rm H} - t_{\rm BH})/2 = 0$ (при расчете арок на температурные воздействия учитываем только равномерный нагрев или охлаждение арки).

Для арки без затяжки

$$\Delta_{1t} = \int_{A}^{B} N_{1} \alpha \frac{t_{BH} + t_{H}}{2} dx.$$
 (7.32)

Будем считать величины α и $t = (t_{\rm H} + t_{\rm BH})/2$ постоянными вдоль оси балки. С учетом того, что $N_1 = -\cos\varphi$ (рис. 7.10),

$$\Delta_{1t} = -\alpha \frac{t_{\rm BH} + t_{\rm H}}{2} I.$$
 (7.33)

В арке с затяжкой на уровне опор А и В

$$\Delta_{1t} = -\frac{t_{\rm BH} + t_{\rm H}}{2} I(\alpha - \alpha_3), \qquad (7.34)$$

где α_3 – коэффициент линейного расширения материала затяжки.

Для арки с повышенной затяжкой в формуле (7.34) следует принять $I = I_3$.

При расчете двухшарнирных арок на смещение опорных связей (осадка опор) каноническое уравнение имеет вид

$$X_1 \delta_{11} + \Delta_{1c} = 0, \qquad (7.35)$$

где Δ_{1c} в соответствии с формулой (5.31) при заданном смещении связи, показанном на рис. 7.13, равно

$$\Delta_{1c} = C_x \,. \tag{7.36}$$

Рис. 7.13. К определению перемещения Δ_{1c}

Формула (7.36) остается справедливой для арки с затяжкой, если речь идет о податливости затяжки.

После определения коэффициентов и свободных членов уравнений (7.23), (7.31), (7.35) находятся значения основной неизвестной и строятся окончательные эпюры.

При действии внешней нагрузки в арке без затяжки

$$M_{x} = -X_{1}y_{x} + M_{x}^{0};$$

$$N_{x} = -X_{1}\cos\varphi_{x} - Q_{x}^{0}\sin\varphi_{x};$$

$$Q_{x} = -X_{1}\sin\varphi_{x} + Q_{x}^{0}\cos\varphi_{x}.$$
(7.37)

При действии температуры и заданного смещения связей

$$M_{x} = X_{1}y_{x};$$

$$N_{x} = -X_{1}\cos\varphi_{x};$$

$$Q_{x} = -X_{1}\sin\varphi_{x}.$$
(7.38)

Следует отметить, что при вычислении перемещений δ_{11} и Δ_{1F} в подъемистых арках $\left(\frac{f}{l} > \frac{1}{5}\right)$ можно пренебречь влиянием продольных и поперечных сил. При расчете пологих арок $\left(\frac{f}{l} \le \frac{1}{5}\right)$ следует учитывать влияние продольных и поперечных сил. Вообще же сравнительное влияние различных членов выражений (7.27), (7.28), (7.30), (7.31) зависит не только от очертания арочной кривой и от сечения арки, но также и от самой нагрузки.

7.5.1. Пример расчета двухшарнирной арки на действие внешней нагрузки

Расчетная схема арки показана на рис. 7.14.

Расчет начинаем с выбора основной системы (рис. 7.15, а). Разбиваем пролет арки на десять равных частей и в основной системе строим балочные эпюры M^0 и Q^0 (рис. 7.15, б).

Рис. 7.14. Расчетная схема двухшарнирной арки

Рис. 7.15. Основная система двухшарнирной арки и эпюры M^0 и Q^0

Вычисляем геометрические характеристики оси арки (табл. 7.2). По формуле (7.27) определяем перемещение $EJ_0\delta_{11}$. Так как для рассматриваемой в примере арки $\frac{f}{l} = \frac{1}{4}$, что больше $\frac{1}{5}$, не будем учитывать влияние продольных и поперечных сил:

$$EJ_{0}\delta_{11} = \sum_{i=1}^{n} y_{i}^{2} \Delta s_{i}' =$$
$$= \left(1.8^{2} \frac{4}{0.709} + 5^{2} \frac{4}{0.781} + 7.4^{2} \frac{4}{0.855} + 9^{2} \frac{4}{0.926} + 9.8^{2} \frac{4}{0.98}\right) \cdot 2 = 2288,798 \,\mathrm{kHm^{3}}$$

По формуле (7.28) находим свободный член уравнения (7.23). Ординаты Уср каждого участка показаны на рис. 7.15, а, а значения балочных изгибающих моментов для тех же точек – на рис. 7.15, б:

$$EJ_{0}\Delta_{1F} = -\sum_{i=1}^{n} y_{i} M_{i}^{0} \Delta S_{i}' =$$

$$= -\left(1.8 \cdot 560 \frac{4}{0.709} + 5 \cdot 1520 \frac{4}{0.781} + 7.4 \cdot 2160 \frac{4}{0.855} + 9 \cdot 2480 \frac{4}{0.926} + 9 \cdot 2480 \frac{4}{0.926} + 9.8 \cdot 2480 \frac{4}{0.98} + 9.8 \cdot 2160 \frac{4}{0.98} + 9 \cdot 1680 \frac{4}{0.926} + 7.4 \cdot 1200 \frac{4}{0.855} + 5 \cdot 720 \frac{4}{0.781} + 1.8 \cdot 240 \frac{4}{0.709}\right) = -529137.14 \text{ KHm}^{3}.$$

Таблица 7.2

	Δf	$tg \phi =$	$\sin \phi =$	$\cos \phi =$	V IV
X _M	$y = \frac{41}{l^2}(l - x)x$	$-\frac{4f}{(1-2x)}$	$=$ tg ϕ	1	$y_{cp} = \frac{y_{n+1} + y_n}{2}$
	I	$=\frac{1}{l^2}(l-2\mathbf{X})$	$\left[(1 + tg^2 \phi)^{0,5} \right]$	$\left[\left(1 + tg^2 \phi\right)^{0,5} \right]$	2
0	0	1,0	0,709	0,709	1.8
4	3,6	0,8	0,625	0,781	5.0
8	6,4	0,6	0,513	0,855	5,0 7 /
12	8,4	0,4	0,370	0,926	9.0
16	9,6	0,2	0,196	0,980	9,0
20	10,0	0	0	1,0	9.8
24	9,6	-0,2	-0,196	0,980	9,0
28	8,4	-0,4	-0,370	0,926	7.4
32	6,4	-0,6	-0,513	0,855	5,0
36	3,6	-0,8	-0,625	0,781	1,8
40	0	-1,0	-0,709	0,709	
					1

Геометрические характеристики оси арки

Решаем каноническое уравнение (7.26) и определяем X_1 :

$$X_1 = \frac{529137,14}{2288,798} = 231,186\,\mathrm{\kappa H} \,.$$

По формулам (7.37) вычисляем ординаты окончательных эпюр (рис. 7.16).

Рис. 7.16. Окончательные эпюры моментов, поперечных и продольных сил

7.5.2. Линии влияния в сечениях двухшарнирной арки

Построим сначала линию влияния распора X_1 . Из уравнения (7.23) имеем

$$X_1 = -\frac{\Delta_{1F}}{\delta_{11}} = -\frac{\delta_{1F}}{\delta_{11}}.$$
 (7.39)

Из формулы (7.39) следует, что линия влияния X_1 представляет собой в определенном масштабе линию прогибов оси арки δ_{11} под действием силы $X_1 = 1$. Эту линию прогибов можно построить при помощи фиктивных грузов (см. п. 5.9). Заменяем криволинейную ось арки (рис. 7.17, а) ломаной линией, разделив ее на достаточно большое количество равных частей.

При построении линии X₁ будем пренебрегать продольными деформациями. Тогда формула фиктивного груза имеет вид (см. п. 5.9)

$$w_{n} = \frac{\Delta s_{n}}{6EJ_{n}} (2y_{n} + y_{n-1}) + \frac{\Delta s_{n+1}}{6EJ_{n+1}} (2y_{n} + y_{n+1}).$$
(7.40)

Определив фиктивные грузы по (7.40) для каждой точки деления оси арки, приложим эти грузы к фиктивной арке (балке) и построим от них эпюру моментов. Напоминаем, что фиктивные грузы направляются в сторону эпюры изгибающих моментов M_1 (рис. 7.17, б). Чтобы перейти к линии влияния, необходимо согласно формуле (7.39) каждую ординату M^{Φ} (рис. 7.17, в) разделить на постоянное число ($-1/\delta_{11}$). Линия влияния X_1 показана на рис. 7.17, г.

Для построения линии влияния *М_x* (рис. 7.17, д, е) воспользуемся первой формулой (7.37):

л.в.
$$M_{\chi} =$$
 л.в. $M_{\chi}^{0} -$ л.в. $X_{1}y_{\chi}$. (7.41)

Линия влияния балочного изгибающего момента показана на рис. 7.17, д, а окончательный график – на рис. 7.17, е.

Рис. 7.17. К построению линий влияния в двухшарнирной арке Построение линии влияния N_x выполним по второй формуле (7.37): л.в. $N_x = -\pi$.в. $Q_x^0 \sin \varphi_x - \pi$.в. $X_1 \cos \varphi_x$. (7.42)

Пояснение к построению графика показано на рис. 7.17, ж, а сам график – на рис. 7.17, з.

Наконец, линию влияния поперечной силы построим по третьей формуле (7.37):

л.в.
$$Q_{\chi} = -\pi.в. Q_{\chi}^{0} \cos \varphi_{\chi} - \pi.в. X_{1} \sin \varphi_{\chi}$$
. (7.43)

Линия влияния Q_x показана на рис. 7.17, и, к.

Построенные линии влияния позволяют найти то положение временной нагрузки, которое вызывает в сечении X наибольшие изгибающие моменты, поперечные и продольные силы. Это необходимо, в свою очередь, для расчета напряженно-деформированного состояния арки (см. разд. 2).

7.6. Расчет бесшарнирных арок

Арка с защемленными опорами называется бесшарнирной. Бесшарнирная арка трижды статически неопределима. Расчет ее, так же как и двухшарнирной, будем производить методом сил. Основную систему выберем, разрезав арку по оси симметрии (см. п. 6.4). Часть неизвестных вынесем на жесткие консоли (рис. 7.18, а).

Система канонических уравнений будет иметь вид (см. (6.1)):

$$X_{1}\delta_{11} + X_{2}\delta_{12} + X_{3}\delta_{13} + \Delta_{1F} = 0;$$

$$X_{1}\delta_{21} + X_{2}\delta_{22} + X_{3}\delta_{23} + \Delta_{2F} = 0;$$

$$X_{1}\delta_{31} + X_{2}\delta_{32} + X_{3}\delta_{33} + \Delta_{3F} = 0.$$

(7.44)

Для вычисления коэффициентов системы (7.44) построим в основной системе единичные эпюры (рис. 7.18, б-к). Ввиду того, что эпюры $M_1 \, \mathrm{u} \, M_2$, $N_1 \, \mathrm{u} \, N_2$, $Q_1 \, \mathrm{u} \, Q_2$, $M_1 \, \mathrm{u} \, M_3$ взаимно ортогональны, а $N_3 = 0 \, \mathrm{u} \, Q_3 = 0$, перемещения $\delta_{12} = \delta_{21} = \delta_{13} = \delta_{31} = 0$. Перемещение δ_{23} будет равно нулю, если длина жесткой консоли Y_0 окажется равной

$$y_{0} = \frac{\int_{A}^{B} y \frac{\mathrm{d}s}{EJ}}{\int_{A}^{B} \frac{\mathrm{d}s}{EJ}} .$$
 (7.45)

Тогда система уравнений (7.44) разделится на три независимые друг от друга уравнения

$$X_{1}\delta_{11} + \Delta_{1F} = 0; X_{2}\delta_{22} + \Delta_{2F} = 0; X_{3}\delta_{33} + \Delta_{3F} = 0.$$
(7.46)

Рис. 7.18. Основная система бесшарнирной арки и эпюры от единичных усилий

На основании формулы (5.22) имеем

$$\delta_{11} = \int_{A}^{B} x^2 \frac{\mathrm{d}s}{EJ} + \int_{A}^{B} \sin^2 \varphi \frac{\mathrm{d}s}{EA} + \int_{A}^{B} \cos^2 \varphi \frac{\mu \mathrm{d}s}{GA}; \qquad (7.47)$$

$$\delta_{22} = \int_{A}^{B} (\boldsymbol{y} - \boldsymbol{y}_{0})^{2} \frac{d\boldsymbol{s}}{\boldsymbol{E}\boldsymbol{J}} + \int_{A}^{B} \cos^{2} \boldsymbol{\varphi} \frac{d\boldsymbol{s}}{\boldsymbol{E}\boldsymbol{A}} + \int_{A}^{B} \sin^{2} \boldsymbol{\varphi} \frac{\boldsymbol{\mu} d\boldsymbol{s}}{\boldsymbol{G}\boldsymbol{A}}; \qquad (7.48)$$

$$\delta_{33} = \int_{A}^{B} \frac{\mathrm{d}s}{EJ}; \tag{7.49}$$

$$\Delta_{1F} = \int_{A}^{B} x M_{x}^{0} \frac{\mathrm{d}s}{EJ} - \int_{A}^{B} Q_{x}^{0} \sin^{2} \varphi \frac{\mathrm{d}s}{EA} + \int_{A}^{B} Q_{x}^{0} \cos^{2} \varphi \frac{\mu \mathrm{d}s}{GA}; \qquad (7.50)$$

$$\Delta_{2F} = \int_{A}^{B} (\mathbf{y} - \mathbf{y}_{0}) \mathbf{M}_{\mathbf{x}}^{0} \frac{\mathrm{d}\mathbf{s}}{E\mathbf{J}} + \int_{A}^{B} \mathbf{Q}_{\mathbf{x}}^{0} \sin \varphi \cos \varphi \frac{\mathrm{d}\mathbf{s}}{E\mathbf{A}} + \int_{A}^{B} \mathbf{Q}_{\mathbf{x}}^{0} \sin \varphi \cos \varphi \frac{\mu \mathrm{d}\mathbf{s}}{G\mathbf{A}}; \quad (7.51)$$

$$\Delta_{3F} = -\int_{A}^{B} M_{x}^{0} \frac{\mathrm{d}s}{EJ}.$$
(7.52)

Вычисления (7.47) – (7.52) произведем так же, как и в двухшарнирной арке, при помощи приближенной замены интегрирования численным суммированием (рис. 7.19).

Рис. 7.19. Схема разбивки пролета арки на участки

Тогда отмеченные формулы примут вид:

$$\mathbf{y}_{0} = \left(\sum_{i=1}^{n} \mathbf{y}_{i} \Delta \mathbf{s}_{i}^{\prime}\right) / \left(\sum_{i=1}^{n} \Delta \mathbf{s}_{i}^{\prime}\right);$$
(7.53)

$$EJ_{0}\delta_{11} = \sum_{i=1}^{n} x_{i}^{2} \Delta S_{i}' + \sum_{i=1}^{n} \sin^{2} \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} + \sum_{i=1}^{n} \cos^{2} \varphi_{i} \frac{\mu EJ_{0}}{GA_{i}} \Delta S_{i} ; \qquad (7.54)$$

$$EJ_{0}\delta_{22} = \sum_{i=1}^{n} (y_{i} - y_{0})^{2} \Delta S_{i}' + \sum_{i=1}^{n} \cos^{2} \varphi_{i} \frac{J_{0}}{A_{i}} \Delta S_{i} + \sum_{i=1}^{n} \sin^{2} \varphi_{i} \frac{\mu EJ_{0}}{GA_{i}} \Delta S_{i} ; \quad (7.55)$$

$$EJ_{0}\delta_{33} = \sum_{i=1}^{n} \Delta s_{i}'; \qquad (7.56)$$

$$EJ_{0}\Delta_{1F} = \sum_{i=1}^{n} x_{i} M_{i}^{2} \Delta s_{i}' - \sum_{i=1}^{n} Q_{i}^{0} \sin^{2} \varphi_{i} \frac{J_{0}}{A_{i}} \Delta s_{i} + \sum_{i=1}^{n} Q_{i}^{0} \cos^{2} \varphi_{i} \frac{\mu EJ_{0}}{GA_{i}} \Delta s_{i} ; (7.57)$$

$$EJ_{0}\Delta_{2F} = \sum_{i=1}^{n} (y_{i} - y_{0}) M_{i}^{0} \Delta s_{i}' + \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{J_{0}}{A_{i}} \Delta s_{i} + \sum_{i=1}^{n} Q_{i}^{0} \sin \varphi_{i} \cos \varphi_{i} \frac{\mu E J_{0}}{G A_{i}} \Delta s_{i} ; \qquad (7.58)$$

$$EJ_{0}\Delta_{3F} = -\sum_{i=1}^{n} M_{i}^{0} \Delta S_{i}^{\prime} .$$
(7.59)

При расчете бесшарнирной арки на температурные воздействия система канонических уравнений имеет вид

$$X_{1}\delta_{11} + \Delta_{1t} = 0;$$

$$X_{2}\delta_{22} + \Delta_{2t} = 0;$$

$$X_{3}\delta_{33} + \Delta_{3t} = 0.$$

(7.60)

Учитывая лишь равномерный нагрев, найдем

$$\Delta_{1t} = \int_{A}^{B} \alpha t \sin \varphi ds = 0; \qquad (7.61)$$

$$\Delta_{2t} = -\int_{A}^{B} \alpha t \cos \varphi \, \mathrm{d} s = -\alpha t I; \qquad (7.62)$$
$$\Delta_{3t} = 0.$$

При расчете бесшарнирной арки на смещение опорных связей система канонических уравнений принимает такой вид:

$$X_{1}\delta_{11} + \Delta_{1c} = 0;$$

$$X_{2}\delta_{22} + \Delta_{2c} = 0;$$

$$X_{3}\delta_{33} + \Delta_{3c} = 0.$$

(7.63)

Пусть заданное смещение связей будет таким, как показано на рис. 7.20.

Рис. 7.20. К расчету бесшарнирной арки на смещение опорных связей По формуле (5.31) найдем

$$\Delta_{1c} = -\left(C_y + \frac{l}{2}\phi\right); \quad \Delta_{2c} = -\left[-C_x + \left(f - y_0\right)\phi\right]; \quad \Delta_{3c} = \phi. \quad (7.64)$$

Окончательные эпюры *M*, *Q*, *N* строятся по зависимостям, приведенным ниже.

Действие внешней нагрузки:

$$M_{x} = xX_{1} + (y - y_{0})X_{2} - X_{3} + M_{x}^{0};$$

$$N_{x} = X_{1}\sin\varphi_{x} - X_{2}\cos\varphi_{x} - Q_{x}^{0}\sin\varphi_{x};$$

$$Q_{x} = X_{1}\cos\varphi_{x} + X_{2}\sin\varphi_{x} + Q_{x}^{0}\cos\varphi_{x}.$$
(7.65)

Температурные воздействия:

$$M_{x} = (y - y_{0})X_{2};$$

$$N_{x} = -X_{2}\cos\varphi_{x};$$

$$Q_{x} = X_{2}\sin\varphi_{x}.$$
(7.66)

Смещения опорных связей:

$$M_{x} = xX_{1} + (y - y_{0})X_{2} - X_{3};$$

$$N_{x} = X_{1}\sin\phi_{x} - X_{2}\cos\phi_{x};$$

$$Q_{x} = X_{1}\cos\phi_{x} + X_{2}\sin\phi_{x}.$$
(7.67)

Проверка правильности построения эпюр осуществляется на основании зависимостей, приведенных в п. 6.1.

7.6.1. Линии влияния в сечениях бесшарнирной арки

Линии влияния основных неизвестных задаются формулами (7.46), в которых коэффициенты $\delta_{11}, \delta_{22}, \delta_{33}$ являются величинами постоянными, не зависящими от положения подвижного груза F = 1. Все дело сводится поэтому к построению линий влияния для перемещений $\Delta_{1F}, \Delta_{2F}, \Delta_{3F}$. Пользуясь принципом взаимности перемещений, переставим индексы и перейдем к определению перемещений $\delta_{F1}, \delta_{F2}, \delta_{F3}$ и линий влияния:

л.в.
$$X_1 = -\frac{\delta_{F1}}{\delta_{11}};$$
 л.в. $X_2 = -\frac{\delta_{F2}}{\delta_{22}};$ л.в. $X_3 = -\frac{\delta_{F3}}{\delta_{33}}.$ (7.68)

Начнем с построения линии влияния обратно-симметричной неизвестной X_1 (рис. 7.21, a, б).

Рис. 7.21. Построение линии влияния X_1

Вычисленные по формуле (7.40) фиктивные грузы прикладываем к фиктивной полуарке (рис. 7.21, в). Построенная здесь эпюра моментов представляет собой линию прогибов заданного сооружения (рис. 7.21, г). Ординаты линии влияния X_1 определяются по формуле (7.68) для X_1 . На рис. 7.21, д представлена линия влияния X_1 .

Линии влияния X₂ и X₃ строятся аналогичным образом. На рис. 7.22 показан их окончательный вид.

Рис. 7.22. Линии влияния X_2 и X_3

Располагая линиями влияния основных неизвестных, можно, используя зависимости (7.65), построить линии влияния M_x , Q_x , N_x в различных сечениях бесшарнирной арки.

7.7. Расчет статически неопределимых ферм

Фермы применяются в качестве конструктивных элементов различных сооружений. Они в основном воспринимают действующие на сооружение нагрузки. Те фермы, которые применяются на практике, строго говоря, статически неопределимые, так как не имеют идеальных шарнирных соединений в узлах. Здесь мы остановимся на общепринятом расчете ферм как систем с идеально шарнирными узлами (см. разд. 3) и будем рассматривать статически неопределимые шарнирно-стержневые плоские фермы, находящиеся под действием узловой нагрузки. В качестве примера использования ферм приведем железнодорожный мост (рис. 7.23).

Рис. 7.23. Схема моста, пролетное строение которого составлено из статически неопределимых плоских ферм

Для пролетных строений железнодорожных мостов статически неопределимая балочная ферма целесообразнее ряда разрезных ферм, так как обладает более плавной упругой линией и потому не испытывает ударов, которые получаются при переходе осей поезда от одной разрезной фермы на другую. Кроме того, статически неопределимая ферма оказывается в целом более надежной, так как аварии отдельных ее элементов (лишних связей) не приводят к столь тяжелым последствиям, как разрушения элементов статически определимых ферм. Обратим внимание и на недостатки неразрезных пролетных строений, заключающиеся в чувствительности к неравномерной осадке опор. Этим объясняется тот факт, что в конце XIX и первой половине XX в. не решались устраивать неразрезные пролетные строения, не имея достаточной уверенности в надежности работы оснований и фундаментов опор. В настоящее время фундаменты глубокого заложения позволяют обеспечить необходимую надежность опор.

Неразрезными фермами с параллельными поясами перекрывают обычно пролеты 80-150 м, а фермами с увеличенной высотой над промежуточными опорами – 100-250 м.
7.7.1. Расчет на действие внешней нагрузки

Различают два вида статически неопределимых ферм – внешне и внутренне статически неопределимые. Примером внешне статически неопределимых ферм являются неразрезные фермы (рис. 7.23 и 7.24).

Рис. 7.24. Внешне статически неопределимая ферма

К внутренне статически неопределимым относятся различные фермы со сложными решетками (рис. 7.25) и комбинированные системы.

Рис. 7.25. Внутренне статически неопределимая ферма

Разделение ферм на внутренне и внешне статически неопределимые системы является условным приемом. Одну и ту же систему можно рассматривать как внешне, так и как внутренне статически неопределимую. Число лишних связей статически неопределимой фермы, как известно (см. п. 1.5.1), может быть найдено по следующей формуле:

$$J = C_0 + C - 2Y, \qquad (7.69)$$

где C₀ – число опорных связей; С – число стержней фермы; Y – число узлов фермы.

Напомним известный факт. Для того чтобы плоская ферма была статически определимой относительно опорных устройств (внешняя статическая определимость), необходимо и достаточно трех опорных связей, т.е. С₀ для такой фермы равно трем.

Общий ход расчета статически неопределимой фермы при заданных размерах поперечных сечений стержней тот же, что и для рамных систем (см. п. 6.1). Необходимо лишь учитывать одну особенность при определении перемещений узлов, заключающуюся в том, что в стержнях фермы возникают только продольные силы, и тогда в общей формуле Максвелла-Мора (5.22)

$$\Delta_{KF} = \sum \int \frac{M_K M_F}{EJ} ds + \sum \int \frac{N_K N_F}{EA} ds + \sum \int \frac{\mu Q_K Q_F}{GA} ds$$

следует удерживать член, содержащий продольные силы (второй член). Изложим порядок расчета однажды статически неопределимой фермы (рис. 7.24). Освободим заданную ферму от лишней связи, отбросив промежуточную опору (рис. 7.26). Реакцию этой связи принимаем за лишнюю неизвестную X_1 .

Рис. 7.26. Основная система заданной фермы

Для основной системы составим каноническое уравнение деформаций. Физический смысл этого уравнения заключается в том, что перемещение точки приложения силы X_1 по ее направлению от действия X_1 и силы F равно нулю:

$$X_1 \delta_{11} + \Delta_{1F} = 0 \,. \tag{7.70}$$

Здесь δ_{11} – перемещение по направлению X_1 , вызванное этой силой, равной единице, $X_1 = 1$:

$$\delta_{11} = \sum_{i=1}^{C} \frac{N_{1i}^2 I_i}{EA_i} ; \qquad (7.71)$$

 Δ_{1F} – перемещение по направлению X_1 от действия заданной нагрузки F:

$$\Delta_{1F} = \sum_{i=1}^{C} \frac{N_{1i} N_{Fi} I_i}{EA_i}, \qquad (7.72)$$

где N_{1i} – усилие в *i* -м стержне от $X_1 = 1$; N_{Fi} – усилие в *i* -м стержне фермы от внешней нагрузки; I_i – длина *i* -го стержня; С – число стержней фермы; E – модуль упругости материала, из которого изготовлены стержни.

Из уравнения (7.70) с учетом (7.71) и (7.72) находим

$$X_{1} = -\frac{\Delta_{1F}}{\delta_{11}} = -\frac{\sum_{i=1}^{C} \frac{N_{1i} N_{Fi} I_{i}}{EA_{i}}}{\sum_{i=1}^{C} \frac{N_{1i}^{2} I_{i}}{EA_{i}}}.$$
(7.73)

Для ферм, стержни которых выполнены из одного материала, модуль упругости E можно вынести за знак суммы и сократить. Из уравнения (7.73) видно, что неизвестное X_1 зависит от соотношений площадей сечений стержней, составляющих ферму. Если ферма внутренне статически неопределима, то суммирование в знаменателе формулы (7.73) распространяется и на рассеченный стержень.

Определив лишнее неизвестное X_1 по (7.73), находим усилие в любом i -м стержне фермы по формуле

$$N_{i} = N_{Fi} + N_{1i} \cdot X_{1}. \tag{7.74}$$

Аналогично производится расчет *n* раз статически неопределимой фермы. Один из вариантов основной системы для фермы, показанной на рис. 7.25, приведен на рис. 7.27.

Рис. 7.27. Основная система для фермы на рис. 7.25

Основные неизвестные определяют, используя систему канонических уравнений (см., например, (6.1) – (6.3), п. 6.5.2). Здесь необходимо отметить следующее. Чем больше лишних стержней содержит ферма, тем более важное значение для упрощения всех вычислений и построений имеет удачный выбор основной системы, который приводит к обращению в нуль как можно большего количества побочных перемещений (см. п. 6.4).

7.7.2. Расчет на заданные температурные воздействия

Каноническое уравнение в случае температурного воздействия имеет следующий вид (см. п. 6.1.7):

$$X_1 \delta_{11} + \Delta_{1t} = 0. (7.75)$$

Здесь δ_{11} определяется по формуле (7.71);

$$\Delta_{1t} = \alpha \sum_{i=1}^{C} N_{1i} t_i l_i , \qquad (7.76)$$

где α – коэффициент линейного расширения материала, из которого изготовлена ферма; t_i – изменение температуры стержня по сравнению с начальной.

В том случае, когда все стержни нагреты одинаково, формула температурного перемещения (7.76) переходит в следующую:

$$\Delta_{1t} = \alpha \ t \sum_{i=1}^{C} N_{1i} \ I_i \ . \tag{7.77}$$

Реакция отброшенной связи находится так:

$$X_{1} = -\frac{\Delta_{1t}}{\delta_{11}} = -\frac{E \alpha \sum_{i=1}^{C} N_{1i} t_{i} I_{i}}{\sum_{i=1}^{C} \frac{N_{1i}^{2} I_{i}}{A_{i}}}.$$
(7.78)

Усилие в каждом стержне статически неопределимой фермы выразится формулой

$$\boldsymbol{N}_i = \boldsymbol{N}_{1i} \boldsymbol{X}_1. \tag{7.79}$$

7.7.3. Расчет на смещение связей (неточность сборки)

Представим себе, что стержень **AB** (рис. 7.26) длиннее, чем это требуется по конфигурации фермы, на величину **∂**. Запишем каноническое уравнение метода сил (см. п. 6.1.8):

$$X_1 \delta_{11} + \Delta_{1c} = 0 \,. \tag{7.80}$$

Перемещение по направлению X₁ от заданного воздействия (удлинение стержня **AB**) определяется так:

$$\Delta_{1c} = -R a$$

где R – усилие в стержне **AB** от $X_1 = 1$. При этом, если усилие (реакция) в стержне **AB** растягивающее, то перед произведением Ra ставится знак плюс, а если сжимающее – минус (см. п. 5.7).

Определив δ_{11} по (7.71), находим X_1 из уравнения (7.80) и усилие в каждом стержне статически неопределимой фермы по (7.79).

7.7.4. Расчет на подвижную нагрузку

Рассмотрим, как и ранее, ферму с одной лишней связью. Так как усилия в стержнях статически неопределимой фермы выражаются через лишнюю неизвестную X_1 (см. (7.74)), то при расчете на подвижную нагрузку прежде всего построим линию влияния лишнего неизвестного.

Будем исходить из канонического уравнения (7.70). Так как речь идет о единичной нагрузке F = 1, заменим в уравнении (7.70) $\Delta_{1F} = \delta_{1F}$ и далее, применяя теорему о взаимности единичных перемещений, получим $\delta_{1F} = \delta_{F1}$. С учетом этого из уравнения (7.70) найдем

$$X_1 = -\frac{\delta_{F1}}{\delta_{11}}.$$
 (7.81)

Здесь δ_{F_1} – вертикальное перемещение точки приложения силы F = 1 при данном ее положении, вызванное действием неподвижной силы $X_1 = 1$.

Из (7.81) следует, что линия влияния лишнего неизвестного X_1 может быть построена как эпюра вертикальных перемещений узлов фермы

 δ_{F1} делением всех ее ординат на главное перемещение ($-\delta_{11}$), определяемое по формуле (7.71).

Для построения эпюры вертикальных перемещений воспользуемся методом фиктивных грузов (см. п. 5.9). Согласно этому методу для каждого узла грузового пояса фермы определяется фиктивный груз по формуле

$$W_j = \sum_{i=1}^{C} \frac{N_{1i} N_{\lambda i} I_i}{EA_i}, \ j = 1, ..., K,$$
 (7.82)

где $N_{\lambda i}$ – усилие в *i* -м стержне от двух равных и противоположных по направлению пар сил, каждой с моментом, равным единице, приложенных к двум соседним стержням грузового пояса фермы j - 1, j + 1 (рис. 7.28, б); N_{1i} – усилие в *i* -м стержне фермы от $X_1 = 1$; К – число загруженных узлов (рис. 7.28, а).

Рис. 7.28. К определению фиктивных грузов в узлах фермы

Найденные по (7.82) фиктивные грузы прикладываются к фиктивной балке (рис. 7.28, в; см. п. 5.9).

Построенная эпюра изгибающих моментов для фиктивной балки при нагружении фиктивными грузами и будет эпюрой вертикальных перемещений δ_{F1} . Заметим, что при построении эпюр прогибов в фиктивной балке необходимо помнить о том, что перемещения надопорных узлов фермы должны быть равными нулю. Для выполнения этого условия в соответствующих сечениях фиктивной балки следует приложить изгибающие моменты, равные по величине и обратные по знаку деформациям опорных стоек (см. п. 5.9.3).

Линию влияния в произвольном стержне статически неопределимой фермы получаем по линии влияния лишнего неизвестного X_1 , пользуясь формулой (7.74):

л.в.
$$N_i =$$
л.в. $N_{Fi} + N_{1i} \cdot$ л.в. X_1 , (7.83)

где л.в. N_{Fi} – линия влияния в основной системе; N_{1i} – усилие в стержне от $X_1 = 1$.

7.7.5. Пример расчета

Расчетная схема заданной фермы приведена на рис. 7.29. Ферма имеет одну лишнюю связь. Основная система показана на рис. 7.30.

Рис. 7.29. Расчетная схема фермы

Рис. 7.30. Основная система для фермы на рис. 7.29

Каноническое уравнение имеет вид (7.70). Длины стержней приведены в табл. 7.3.

Найдем усилие в каждом стержне фермы в основной системе от силы $X_1 = 1$ (см. рис. 7.31).

Рис. 7.31. К определению усилий от $X_1 = 1$

Усилие в стержне 1-8. Вырежем узел 1 (рис. 7.32).

Рис. 7.32. Схема усилий, действующих в узле 1

Спроектируем все силы, действующие в узле 1, на вертикальную ось:

$$\sum F_y = 0: \frac{1}{2} - N_{1-8} \sin 45^\circ = 0.$$

Отсюда

$$N_{1-8} = \frac{1}{2 \cdot 0,707} = 0,707$$
.

Усилие в стержне 1-2.

$$\sum \boldsymbol{M}_{8}^{\text{\tiny ABB}} = 0: \quad \frac{1}{2} \cdot 4 + \boldsymbol{N}_{1-2} \cdot 4 = 0; \quad \boldsymbol{N}_{1-2} = -0.5.$$

Усилие в стержне 8-2.

$$\sum \boldsymbol{M}_{0}^{\text{\tiny ABB}} = 0; \quad \frac{1}{2} \cdot 28 + \boldsymbol{N}_{8-2} \cdot 25,456 = 0; \quad \boldsymbol{N}_{8-2} = -0,55$$

Усилие в стержне 8-9.

$$\sum \boldsymbol{M}_{2}^{\text{\tiny ABB}} = 0: \quad \frac{1}{2} \cdot 8 - \boldsymbol{N}_{8-9} \cdot 4,465 = 0; \quad \boldsymbol{N}_{8-9} = 0,896.$$

Усилие в стержне 9-2.

$$\sum \boldsymbol{M}_{0}^{\text{\tiny JEB}} = 0: \quad \frac{1}{2} \cdot 28 - \boldsymbol{N}_{9-2} \cdot 28,111 = 0; \quad \boldsymbol{N}_{9-2} = 0,498$$

Усилие в стержне 2-3.

$$\sum \boldsymbol{M}_{9}^{\text{neb}} = 0; \quad \frac{1}{2} \cdot 12 + \boldsymbol{N}_{2-3} \cdot 5 = 0; \quad \boldsymbol{N}_{2-3} = -1, 2.$$

Усилие в стержне 9-3.

$$\sum \boldsymbol{M}_{0}^{\text{\tiny ABB}} = 0: \quad \frac{1}{2} \cdot 28 + \boldsymbol{N}_{9-3} \cdot 34,358 = 0; \quad \boldsymbol{N}_{9-3} = -0,407.$$

Усилие в стержне 9-10.

$$\sum \boldsymbol{M}_{3}^{\text{neb}} = 0; \quad \frac{1}{2} \cdot 16 - \boldsymbol{N}_{9-10} \cdot 5{,}457 = 0; \quad \boldsymbol{N}_{9-10} = 1{,}465.$$

Усилие в стержне 3-10.

$$\sum \boldsymbol{M}_{0}^{\text{\tiny JEB}} = 0; \quad \frac{1}{2} \cdot 28 - \boldsymbol{N}_{3-10} \cdot 36,610 = 0; \quad \boldsymbol{N}_{3-10} = 0,382.$$

Усилие в стержне 3-4.

$$\sum \boldsymbol{M}_{10}^{\text{neb}} = 0; \quad \frac{1}{2} \cdot 48 + \boldsymbol{N}_{3-4} \cdot 6 = 0; \quad \boldsymbol{N}_{3-4} = -1,667.$$

Усилие в стержне 10-11.

$$\sum \boldsymbol{M}_{4}^{\text{\tiny ABB}} = 0; \quad \frac{1}{2} \cdot 24 - \boldsymbol{N}_{10-11} \cdot 6 = 0; \quad \boldsymbol{N}_{10-11} = 2, 0.$$

Усилие в стержне 10-4.

$$\sum F_{y}^{\text{\tiny ABB}} = 0: \quad \frac{1}{2} + N_{10-4} \cdot \cos\beta = 0; \quad N_{10-4} = -0,601.$$

Усилия в остальных стержнях фермы нет надобности определять, так как нагрузка и ферма симметричны. Найденные усилия занесем в табл. 7.3.

Найдем теперь усилия в стержнях основной системы фермы (рис. 7.30) от внешней нагрузки (рис. 7.33).

Усилие в стержне 1-8. Вырезаем узел 1 (рис. 7.33). Составим уравнение равновесия:

$$\sum F_{y} = 0$$
: 220 + $N_{1-8} \sin 45^{\circ} = 0$; $N_{1-8} = -311,174 \,\mathrm{\kappa H}$.

Рис. 7.33. К определению усилий от внешней нагрузки

Усилие в стержне 1-2. Сечение I-I:

 $\sum M_8^{\text{neb}} = 0$: 220 · 4 - N_{1-2} · 4 = 0; $N_{1-2} = 220 \text{ kH}$.

Усилие в стержне 8-2. Сечение I-I:

 $\sum M_0^{\text{лев}} = 0$: 220 · 28 – N_{8-2} · 25,456 = 0; $N_{8-2} = 241,986$ кH. Усилие в стержне 8-9. Сечение I-I:

 $\sum M_2^{\text{neb}} = 0$: 220 · 8 + N_{8-9} · 4,465 = 0; $N_{8-9} = -394,177 \text{ kH}$.

Усилие в стержне 9-2. Сечение II-II:

 $\sum M_0^{\text{лев}} = 0$: 220 · 28 - 100 · 36 + N_{9-2} · 28,111 = 0; $N_{9-2} = -91,067$ кH. Усилие в стержне 2-3. Сечение II-II:

 $\sum M_9^{\text{neb}} = 0; \quad 220 \cdot 12 - 100 \cdot 4 - N_{2-3} \cdot 5 = 0; \quad N_{2-3} = 448 \text{ kH}.$

Усилие в стержне 9-10. Сечения III-III, IV-IV:

 $\sum M_3^{\text{пев}} = 0$: 220 · 16 - 100 · 8 + N_{9-10} · 5,457 = 0; $N_{9-10} = -498,442$ кH. Усилие в стержне 9-3. Сечение III-III:

 $\sum \boldsymbol{M}_{0}^{\text{\tiny HBB}} = 0: \quad 220 \cdot 28 - 100 \cdot 36 - \boldsymbol{N}_{9-3} \cdot 34,358 = 0; \quad \boldsymbol{N}_{9-3} = 74,509 \text{ kH}.$

Усилие в стержне 3-10. Сечение IV-IV:

 $\sum M_0^{\text{лев}} = 0:220 \cdot 28 - 100 \cdot 36 - 150 \cdot 44 + N_{3-10} \cdot 36,61 = 0; N_{3-10} = 110,352 \text{ кH}.$ Усилие в стержне 3-4. Сечение IV-IV:

 $\sum M_{10}^{\text{лев}} = 0$: 220 · 20 - 100 · 12 - 150 · 4 - N_{3-4} · 6 = 0; $N_{3-4} = 433,333$ кH. Усилие в стержне 10-4. Сечение V-V:

 $\sum F_{\gamma}^{\text{\tiny JeB}} = 0$: 220-100-150- $N_{10-4} \cos 33,69^\circ = 0$; $N_{10-4} = -36,058 \,\text{kH}$.

Усилие в стержне 10-11. Сечение V-V:

 $\sum M_4^{\text{лев}} = 0$: 220 · 24 - 100 · 16 - 150 · 8 + N_{10-11} · 6 = 0; $N_{10-11} = -413,333$ кH. Усилие в стержне 11-4. Сечение VI-VI:

 $\sum F_y^{\text{пр}} = 0$: 200 – 50 – 120 – $N_{11-4} \cos 33,69^\circ = 0$; $N_{11-4} = 36,058 \text{ кH}$. Усилие в стержне 4-5. Сечение VI-VI:

 $\sum \boldsymbol{M}_{11}^{\text{np}} = 0: \quad 200 \cdot 20 - 120 \cdot 12 - 50 \cdot 4 - \boldsymbol{N}_{4-5} \cdot 6 = 0; \quad \boldsymbol{N}_{4-5} = 393,333 \,\text{kH}.$

Усилие в стержне 11-5. Сечение VII-VII:

$$\sum \boldsymbol{M}_{0_1}^{\text{np}} = 0: \quad 200 \cdot 28 - 120 \cdot 36 - 50 \cdot 44 + \boldsymbol{N}_{11-5} \cdot 36, 61 = 0; \quad \boldsymbol{N}_{11-5} = 25, 13 \text{ kH}.$$

Усилие в стержне 11-12. Сечение VII-VII:

 $\sum M_5^{\text{пр}} = 0$: 200 · 16 - 120 · 8 + N_{11-12} · 5,457 = 0; $N_{11-12} = -410,482$ кH. Усилие в стержне 12-5. Сечение VIII-VIII:

 $\sum M_0^{\text{пр}} = 0$: 200 · 28 – 120 · 36 – N_{12-5} · 34,358 = 0; $N_{12-5} = 37,255$ кH. Усилие в стержне 5-6. Сечение VIII-VIII:

 $\sum M_{12}^{\text{np}} = 0; \quad 200 \cdot 12 - 120 \cdot 4 - N_{5-6} \cdot 5 = 0; \quad N_{5-6} = 384 \text{ kH}.$

Усилие в стержне 12-6. Сечение IX-IX:

 $\sum \boldsymbol{M}_{0_1}^{\text{np}} = 0; \quad 200 \cdot 28 - 120 \cdot 36 + \boldsymbol{N}_{12-6} \cdot 28, 111 = 0; \quad \boldsymbol{N}_{12-6} = -45,534 \,\text{kH}.$

Усилие в стержне 12-13. Сечение IX-IX:

 $\sum M_0^{\text{np}} = 0$: 200 · 8 + N_{12-13} · 4,465 = 0; $N_{12-13} = -358,343 \text{ kH}$.

Усилие в стержне 6-13. Сечение Х-Х:

 $\sum M_{0_1}^{\text{np}} = 0$: 200 · 28 - N_{6-13} · 25,456 = 0; $N_{6-13} = 219,987 \text{ kH}$.

Усилие в стержне 6-7. Сечение Х-Х:

 $\sum M_{13}^{\text{np}} = 0$: 200 · 4 – N_{6-7} · 4 = 0; $N_{6-7} = 200 \,\text{kH}$.

Усилие в стержне 13-7. Вырежем узел 7 (рис. 7.33) и рассмотрим условие его равновесия:

$$\sum F_y = 0$$
: 200 + $N_{13-7} \sin 45^\circ = 0$; $N_{13-7} = -282,885 \,\mathrm{\kappa H}$.

Найденные усилия занесем в табл. 7.3.

Таблица 7.3

Усилия в стержнях статически неопределимой фермы и проверка правильности определения усилий

№ I_i , Площадь N_{1i} $\frac{N_{1i}^2 I_i}{EA_i}$	N _{Fi} , кН	$\frac{N_{Fi} N_{1i} I_i}{EA_i}$	N _i , кН	$\frac{N_i N_{1i} I_i}{EA_i}$
--	-------------------------	----------------------------------	-------------------------------	-------------------------------

		стержня						
1-8	5,657	2A	0,707	1,414	-311,74	-622,270	-126,059	-252,086
1-2	8,0	2A	-0,5	1,0	220,0	-440,0	89,084	-178,168
8-2	5,657	Α	-0,55	1,711	241,986	-752,903	97,979	-304,847
8-9	8,062	2A	0,896	3,236	-394,177	-1423,679	-159,576	-576,353
2-3	8,0	2A	-1,2	5,76	448,0	-2150,40	133,803	-642,254
2-9	6,403	А	0,498	1,588	-91,067	-290,385	39,325	125,395
9-3	6,403	А	-0,407	1,061	74,509	-194,172	-32,056	83,539
9-10	8,062	2A	1,466	8,663	-498,442	-2945,516	-114,598	-677,211
3-10	7,211	А	0,382	1,052	110,352	303,976	210,371	579,488
3-4	8,0	2A	-1,667	11,116	433,333	-2889,464	-3,139	20,931
10-11	8,0	2A	2,0	16,0	-413,333	-3306,664	110,329	882,632
10-4	7,211	А	-0,601	2,603	-36,058	156,269	-193,418	838,237
4-11	7,211	А	-0,601	2,605	36,058	-156,269	-121,302	525,7
4-5	8,0	2A	-1,667	11,116	393,333	-2620,744	-43,139	287,651
11-5	7,211	А	0,382	1,052	25,130	69,223	125,149	344,736
11-12	8,062	2A	1,466	8,663	-410,482	-2425,721	-26,638	-157,416
5-12	6,403	А	-0,407	1,061	37,255	-97,087	-69,310	180,623
5-6	8,0	2A	-1,2	5,76	384,0	-1843,20	69,803	-335,054
12-6	6,403	А	0,498	1,588	-45,334	-144,556	85,108	271,384
12-13	8,062	2A	0,896	3,236	-358,343	-1294,255	-123,742	-446,928
6-13	5,657	А	-0,55	1,711	219,987	-684,457	75,980	-236,4
6-7	8,0	2A	-0,5	1,0	200,0	-400,0	69,085	-138,17
13-7	5,657	2A	0,707	1,414	-282,885	-565,699	-97,770	-195,516
				$\frac{n}{2}$		n		$\frac{n}{2}$
				$\sum_{i=1}^{n}$		$\sum_{i=1}^{n} =$		$\sum_{i=1}^{n}$
				94,412		24719,97		0,087
				EA		=- <u></u> EA		= <i>EA</i>

По формуле (7.73) находим X_1 , кН:

$$X_1 = \frac{24719,973}{94,412} = 261,831$$

По формуле (7.74) определяем усилия в стержнях статически неопределимой фермы (см. табл. 7.3) и осуществляем проверку правильности определения усилий (последняя графа табл. 7.3).

7.7.5.1. Определение усилий в стержнях ферм при помощи линий влияния

Сначала построим линию влияния X_1 . В стержнях основной системы фермы найдем усилия от пар сил с моментом, равным единице, приложенных поочередно в узлах 2, 3, 4 (рис. 7.34, а, б, в).

Рис. 7.34. Определение фиктивных грузов и построение линии влияния X_1

Усилия в стержнях фермы от единичных пар приведены в табл. 7.4. Полученные в табл. 7.4 фиктивные грузы прикладываем к шарнирно опертой балке (рис. 7.34, г) и строим эпюру моментов.

Таблица 7.4

		1 ' '	1	1	5		
	Усилия от единичных пар, приложенных в узлах						
N⁰		Узел 2		Узел 3	Узел 4		
стержня	$\overline{N}_{\lambda i}$	$\overline{N}_{\lambda i} N_{1i} I_i$	$\overline{N}_{\lambda i}$	$\overline{N}_{\lambda i} N_{1i} I_i$	$\overline{N}_{\lambda i}$	$\overline{N}_{\lambda i} N_{1i} I_i$	
		EAi		EAi		EAi	
1-8	-0,177	-0,354	0	0	0	0	

К определению фиктивных грузов

1-2	0,125	0,25	0	0	0	0
8-2	0,137	-0,426	0	0	0	0
8-9	-0,224	-0,809	0	0	0	0
2-3	0,1	-0,48	0,1	-0,48	0	0
2-9	0,196	0,625	-0,16	-0,51	0	0
9-3	-0,16	0,417	0,131	-0,341	0	0
9-10	0	0	-0,183	-1,081	0	0
3-10	0	0	0,177	0,488	-0,15	-0,413
3-4	0	0	0,083	-0,553	0,083	-0,553
10-11	0	0	0	0	-0,167	-1,336
10-4	0	0	-0,15	0,65	0,15	0,65
4-11	0	0	0	0	0,15	-0,65
4-5	0	0	0	0	0,083	-0,553
11-5	0	0	0	0	-0,15	-0,413
11-12	0	0	0	0	0	0
5-12	0	0	0	0	0	0
5-6	0	0	0	0	0	0
12-6	0	0	0	0	0	0
12-13	0	0	0	0	0	0
6-13	0	0	0	0	0	0
6-7	0	0	0	0	0	0
13-7	0	0	0	0	0	0
		\sum_{n}^{n}		$\sum_{n=1}^{n}$		$\sum_{n=1}^{n}$
		$\sum_{i=1}^{n} =$		$\sum_{i=1}^{n}$		$\sum_{i=1}^{n}$
		1.277		1.827		4.568
		$=-\frac{EA}{EA}$		$=-\frac{B}{EA}$		$=-\frac{B}{EA}$

Линии влияния X_1 строятся в соответствии с формулой (7.81). Полученная над силой X_1 ордината линии влияния равна 0,998. Погрешность составляет 0,2%. По построенной линии влияния найдем величину X_1 от заданной нагрузки (см. рис. 7.30, а), кН:

 $X_1 = 100 \cdot 0.456 + 150 \cdot 0.805 + 50 \cdot 0.805 + 120 \cdot 0.456 = 261.32$.

В результате статического расчета значение X_1 получилось равным $X_1 = 261,831$. Погрешность составляет 0,19 %.

Построим теперь линии влияния усилий в стержнях заданной статически неопределимой фермы. В соответствии с формулой (7.83) искомая линия влияния представляет собой сумму двух линий влияния: линии влияния усилий в основной системе фермы и линии влияния X_1 (рис. 7.34, д), все ординаты которой умножены на постоянное число – усилие в основной системе от $X_1 = 1$.

Линия влияния **N**₁₋₈ (рис. 7.35, а)

Для построения линии влияния N_{1-8}^0 (символ N_{1-8}^0 означает, что линия влияния строится в основной системе) воспользуемся способом вырезания узлов (рис. 7.36).

Рис. 7.36. Схема усилий, действующих на узел 1

Рассмотрим два положения груза F = 1: груз в узле 1, $R_1 = 1$, $N_{1-8} = 0$; ; груз вне узла (на участке 2-7), $\sum F_y = 0$, $R_1 + N_{1-8}^0 \sin 45^\circ = 0$; $N_{1-8}^0 = -R_1 \frac{1}{0,707}$. Следовательно, линия влияния N_{1-8}^0 на участке 2-7 будет такой же, как и линия влияния R_1 , все ординаты которой умножены на постоянное число (-1/0,707) (см. рис. 7.35, б). Теперь линию влияния X_1 умножаем на 0,707 (см. рис. 7.35, в). Линия влияния N_{1-8} в заданной ферме равна сумме построенных линий влияния (рис. 7.35, г). Вычислим по линии влияния усилие N_{1-8} и сравним с результатом аналитического расчета (табл. 7.3), кН:

 $N_{1-8} = -100 \cdot 0.856 - 150 \cdot 0.374 + 50 \cdot 0.097 + 120 \cdot 0.086 = -126,53.$

Погрешность составляет 0,37 %.

Линия влияния N_{9-2} . Для нахождения усилий от силы F = 1 в стержне 9-2 воспользуемся сечением II-II (см. рис. 7.33): груз на участке 1-2, $\sum M_0^{np} = 0$, $R_7 \cdot 76 - N_{9-2}^0 \cdot 28,111 = 0$, $N_{9-2}^0 = 2,704R_7$; груз на участке 3-7, $\sum M_0^{neB} = 0$, $R_1 \cdot 28 + N_{9-2}^0 \cdot 28,111 = 0$, $N_{9-2}^0 = -0,996R_1$. Линия влияния N_{9-2}^0 показана на рис. 7.35, д. В соответствии с табл. 7.3 ординаты линии влияния X_1 умножаем на 0,498 (см. рис. 7.35, е). Линия влияния N_{9-2} показана на рис. 7.35, ж. Найдем усилие N_{9-2} , кН, по построенной линии влияния: $N_{9-2} = 100 \cdot 0,678 - 150 \cdot 0,263 + 50 \cdot 0,069 + 120 \cdot 0,061 = 39,12$.

Погрешность составляет $\frac{39,325 - 39,12}{39,325}$ 100 = 0,52%.

Рис. 7.35. Построение линий влияния усилий в стержнях заданной фермы

Линия влияния N_{2-3} . Сечение II-II (рис. 7.33). Груз F = 1 на участке 1-2, $\sum M_9^{\text{пр}} = 0$, $R_7 \cdot 36 - N_{2-3}^0 \cdot 5 = 0$, $N_{2-3}^0 = 7,2R_7$. Груз F = 1 на участке 3-7, $\sum M_9^{\text{пев}} = 0$, $R_1 \cdot 12 - N_{2-3}^0 \cdot 5 = 0$, $N_{2-3}^0 = 2,4R_1$. Линия влияния N_{2-3}^0 изображена на рис. 7.35, з. Линия влияния X_1 , все ординаты которой умножены на 1,2 (см. табл. 7.3), показана на рис. 7.35, и. Суммарная линия влияния изображена на рис. 7.35, к. Усилие N_{2-3} равно, кН,

 $N_{2-3} = 100 \cdot 0.653 + 150 \cdot 0.634 - 50 \cdot 0.166 - 120 \cdot 0.147 = 134.46$.

Погрешность составляет 0,49 %.

РАЗДЕЛ 8

ДИНАМИЧЕСКИЕ РАСЧЕТЫ КОНСТРУКЦИЙ

8.1. Общие положения

Динамика сооружений – это специальный раздел строительной механики, посвященный методам расчета сооружений на динамические нагрузки. Динамические нагрузки во время своего действия сообщают массам сооружения ускорения, вызывая появление инерционных сил. Если действие статических нагрузок определяется их величиной, то при расчете на динамические нагрузки наряду с величиной существенную роль играет характер нагрузки. Особенно в этом отношении коварна всякая периодическая нагрузка. Действие такой нагрузки зависит не только от величины, но и от частоты. Иногда малая по величине периодическая нагрузка может создать большой динамический эффект, т. е. вызвать опасные, с точки зрения несущей способности и условий эксплуатации, напряжения и перемещения. Все это объясняется способностью сооружения совершать упругие колебания различной частоты и отзываться на определенные частоты, создаваемые различными источниками возбуждения.

Динамический расчет сооружений состоит в определении внутренних сил и перемещений от динамических нагрузок, величина и характер действия которых известны, или в проверке системы на резонанс при периодически повторяющейся нагрузке определенной частоты.

Движение упругой системы, вызванное периодически изменяющейся силой, складывается из колебания, совершающегося с частотой возмущающей силы, и из свободных колебаний, амплитуда которых зависит от начальных условий движения. Сопротивление, сколь бы мало оно ни было, постоянно уничтожает эти свободные колебания, поэтому, если действие возмущающей силы на систему продолжительно, то в конце концов решающее значение будет иметь только стационарная часть вынужденных колебаний. Поэтому в дальнейшем мы ограничимся только этой стационарной частью движения. При этом мы будем пользоваться уже известным нам фактом, что частота этих колебаний равна частоте возмущающей силы, а разность фаз возмущающей силы и вынужденных колебаний в случае пренебрежимо малого сопротивления равна 0° или 180°. В наших последующих рассуждениях весьма важную роль играет то обстоятельство, что дифференциальное уравнение поперечных колебаний линейно, что позволяет налагать друг на друга различные частные решения.

8.2. Поперечные колебания прямых брусьев

8.2.1. Дифференциальное уравнение поперечных колебаний

Брус с распределенной массой представляет собой систему с бесконечным числом степеней свободы. Его положение в любой момент времени определяется упругой линией, которая при динамических нагрузках описывается функцией двух переменных: координаты сечения X и времени t, т. е.

$$y=f(x,t)$$

Дифференциальная зависимость между кривизной упругой линии и изгибающим моментом при положительных прогибах бруса, направленных вниз, как известно, имеет вид

$$EJ(x)\frac{\partial^2 y}{\partial x^2} = -M(x,t).$$
(8.1)

Дифференцируем дважды это выражение по X :

$$\frac{\partial^2}{\partial x^2} \left[EJ(x) \frac{\partial^2 y}{\partial x^2} \right] = -\frac{\partial^2 M}{\partial x^2} = -p(x, t), \qquad (8.2)$$

где P(x, t) – действующая на брус поперечная нагрузка, направленная снизу вверх (положительное направление).

Во время движения бруса распределенная нагрузка P(x, t) в общем случае состоит из нагрузок следующих видов: активной заданной нагрузки интенсивностью Q(x, t); инерционных сил $m(x)\frac{\partial^2 y}{\partial t^2}$, если пренебречь продольными смещениями сечений, их поворотами и сдвигами (здесь m(x) = G/g – погонная масса балки, G – вес балки, g – ускорение свободного падения); сил сопротивления движению $P^*(x, t)$.

Таким образом,

$$p(x,t) = q(x,t) + m(x)\frac{\partial^2 y}{\partial t^2} + p^*(x,t).$$
(8.3)

Подставляя (8.3) в (8.2), получим

$$\frac{\partial^2}{\partial x^2} \left[EJ(x) \frac{\partial^2 y}{\partial x^2} \right] + m(x) \frac{\partial^2 y}{\partial t^2} + p^*(x, t) = -q(x, t) .$$
(8.4)

Это и есть дифференциальное уравнение поперечного движения бруса переменного сечения в общем виде. Оно линейно с переменными коэффициентами, не зависящими от действующей нагрузки. Поэтому для исследования движения $\mathcal{Y}(x, t)$ может быть применен принцип независимости действия сил. Дифференциальное уравнение (8.4) достаточно точно описывает поведение балки при не очень быстрых воздействиях (не мгновенных) и широко используется при решении многих динамических задач.

Будем в дальнейшем рассматривать балки с постоянной жесткостью EJ = const и равномерно распределенной массой M. Будем также рассматривать установившиеся колебания; примем (об этом говорилось в п. 8.1) $p^*(x, t) = 0$. Тогда дифференциальное уравнение (8.4) принимает следующий вид:

$$EJ \frac{\partial^4 y}{\partial x^4} + m \frac{\partial^2 y}{\partial t^2} = -q(x, t).$$
(8.5)

Дифференциальное уравнение свободных колебаний получим из (8.5), полагая в нем q(x, t) = 0:

$$EJ \frac{\partial^4 y}{\partial x^4} + m \frac{\partial^2 y}{\partial t^2} = 0.$$
(8.6)

8.2.2. Свободные колебания бруса

Решение дифференциального уравнения (8.6) будем искать в следующем виде:

$$y(x,t) = \sum_{k=1}^{\infty} y_k(x) \Phi_k(t),$$
 (8.7)

где $\mathcal{Y}_k(x)$ – функция, зависящая только от X (k-я форма колебаний); $\Phi_k(t)$ – функция, зависящая от времени t.

Подставим (8.7) в исходное уравнение (8.6):

$$EJ \frac{\partial^4}{\partial x^4} \left[\sum_{k=1}^{\infty} y_k(x) \Phi_k(t) \right] + m \frac{\partial^2}{\partial t^2} \left[\sum_{k=1}^{\infty} y_k(x) \Phi_k(t) \right] = 0.$$

Приравняем нулю одноименные слагаемые:

$$EJ \frac{\partial^4 y_k}{\partial x^4} \Phi_k(t) + m \frac{\partial^2 \Phi_k}{\partial t^2} y_k(x) = 0.$$
(8.8)

Разделим это уравнение почленно на произведение функций $m \cdot y_k(x) \cdot \Phi_k(t)$:

$$\frac{EJ}{my_k(x)} \frac{\partial^4 y_k}{\partial x^4} = -\frac{\partial^2 \Phi_k}{\partial t^2}.$$
(8.9)

Из полученного равенства видно, что левая часть не зависит от t, а правая – от X. Это позволяет каждую из них приравнять постоянной величине, которую обозначим ω_k^2 . После этого получим два независимых друг

от друга уравнения (этот процесс называется процессом разделения переменных):

$$\frac{\partial^2 \Phi_k}{\partial t^2} + \omega_k^2 \Phi_k(t) = 0; \qquad (8.10)$$

$$\frac{\partial^4 \mathbf{y}_k}{\partial \mathbf{x}^4} - \mathbf{s}_k^4 \mathbf{y}_k = 0.$$
 (8.11)

Здесь ω_k – частота свободных колебаний для k-й формы; s_k^4 – характеристическое число,

$$s_k^4 = \frac{m\omega_k^2}{EJ}.$$
 (8.12)

Решение дифференциального уравнения (8.10) имеет следующий вид:

$$\Phi_k(t) = A_k \sin \omega_k t + B_k \cos \omega_k t, \qquad (8.13)$$

где A_k , B_k – произвольные постоянные, характеризующие начальные условия движения при t=0. Как видно из (8.13), свободные колебания y(x, t) совершаются по гармоническому закону с частотой ω_k . Каждой частоте свободных колебаний соответствует главная форма $y_k(x)$.

8.2.3. Главные формы колебаний

Найдем общее решение дифференциального уравнения (8.11). Для этого составим сначала характеристическое уравнение

$$r^4 - S_k^4 = 0$$

Корни этого уравнения

$$r_1 = s_k, \quad r_2 = -s_k, \quad r_3 = i s_k, \quad r_4 = -i s_k.$$

Из вида корней следует, что общее решение должно быть представлено в таком виде:

$$y_k(x) = A \operatorname{ch} sx + B \operatorname{sh} sx + C \cos sx + D \sin sx$$

где ch sx, sh sx – гиперболические функции,

$$\operatorname{ch} sx = \frac{e^{sx} + e^{-sx}}{2}$$
, $\operatorname{sh} sx = \frac{e^{sx} - e^{-sx}}{2}$

Произвольные постоянные A, B, C, D выразятся через начальные параметры (при x = 0). Тогда общее решение (8.11) запишется так:

$$y_k(x) = y_0 A_{sx} + \frac{y_0'}{s_k} B_{sx} - \frac{M_0}{s_k^2 E J} C_{sx} - \frac{Q_0}{s_k^3 E J} D_{sx}, \qquad (8.14)$$

где y_0, y'_0, M_0, Q_0 – начальные параметры, соответственно прогиб, угол поворота, изгибающий момент, поперечная сила в начале координат; A_{sx} , B_{sx}, C_{sx}, D_{sx} – функции А.Н. Крылова:

$$A_{sx} = \frac{1}{2} (\operatorname{ch} sx + \cos sx), \quad B_{sx} = \frac{1}{2} (\operatorname{sh} sx + \sin sx);$$

$$C_{sx} = \frac{1}{2} (\operatorname{ch} sx - \cos sx), \quad D_{sx} = \frac{1}{2} (\operatorname{sh} sx - \sin sx).$$
(8.15)

Численные значения функций (8.15) приведены в прил. 1.

Продифференцировав уравнения (8.14) трижды по X, получим соответственно уравнения для определения угла поворота (8.16), изгибающего момента (8.17), поперечной силы (8.18):

$$y'_{k}(x) = s_{k}y_{0}D_{sx} + y'_{0}A_{sx} - \frac{M_{0}}{s_{k}EJ}B_{sx} - \frac{Q_{0}}{s_{k}^{2}EJ}C_{sx}; \qquad (8.16)$$

$$M_{k}(x) = -s_{k}^{2}y_{0}EJC_{sx} - s_{k}y_{0}'EJD_{sx} + M_{0}A_{sx} + \frac{Q_{0}}{s_{k}}B_{sx}; \quad (8.17)$$

$$Q_k(x) = -s_k^3 y_0 EJB_{sx} - s_k^2 y_0' EJC_{sx} + s_k M_0 D_{sx} + Q_0 A_{sx}. \quad (8.18)$$

Начальные параметры y_0, y'_0, M_0, Q_0 определяются из условий закрепления балки (рис. 8.1). Нетрудно убедиться, что при обычных закреплениях левого конца бруса два начальных параметра всегда известны. Остальные два неизвестных начальных параметра определяются из условий закрепления бруса на правом конце при x = l. Так как составленные при этом два уравнения не содержат свободных членов (однородные), то для получения отличных от нуля решений необходимо определитель составленной системы двух уравнений приравнять нулю, что и дает уравнение частот в общем виде. Это уравнение содержит бесконечное число корней $s_k l$, определяющих бесконечное количество частот свободных колебаний.

Рассмотрим в качестве примера шарнирно опертую балку (рис. 8.1, а). Начальные параметры

$$\boldsymbol{y}_k(0) = 0 \quad \boldsymbol{W} \quad \boldsymbol{M}_k(0) = 0$$

Запишем уравнения (8.14) и (8.17) для противоположного конца бал-

ки:

$$y_k(l) = \frac{y'_0}{s_k} B_{sl} - \frac{Q_0}{s_k^3 E J} D_{sl} = 0;$$

$$M_k(l) = -s_k y'_0 E J D_{sl} + \frac{Q_0}{s_k} B_{sl} = 0.$$

Составляем определитель полученной системы уравнений и приравниваем его нулю:

$$D = \begin{vmatrix} \frac{B_{sl}}{s_k} & -\frac{D_{sl}}{s_k^3 EJ} \\ -s_k EJ D_{sl} & \frac{B_{sl}}{s_k} \end{vmatrix} = 0.$$

Раскрываем определитель и получаем уравнение частот:

$$B_{sl}^2 - D_{sl}^2 = 0. ag{8.19}$$

Подставляем в уравнение (8.19) функциональные зависимости для B_{sl} и D_{sl} (в уравнениях (8.15) заменяем x = l):

$$\frac{1}{4}(\operatorname{sh} \boldsymbol{sl} + \sin \boldsymbol{sl})^2 - \frac{1}{4}(\operatorname{sh} \boldsymbol{sl} - \sin \boldsymbol{sl})^2 = 0.$$

После простейших преобразований получаем

$$\operatorname{sh} \boldsymbol{sl} \cdot \sin \boldsymbol{sl} = 0 \,. \tag{8.20}$$

Чтобы было справедливо полученное равенство, достаточно, чтобы один из сомножителей был равен нулю, но

$$\operatorname{sh} \boldsymbol{sl} = \frac{\boldsymbol{e}^{\boldsymbol{sl}} - \boldsymbol{e}^{-\boldsymbol{sl}}}{2} \neq 0,$$

следовательно,

 $\sin s l = 0$,

а это возможно в случае, когда

$$sl = k \pi$$
, rge $k = 1, 2, ...$

Отсюда найдем

$$S_k = \frac{k\pi}{l}$$
.

С учетом выражения (8.12) получаем формулу для определения частот свободных колебаний шарнирно опертой балки:

$$\omega_k = \frac{k^2 \pi^2}{l^2} \sqrt{\frac{EJ}{m}}, \quad k = 1, 2, \dots$$
 (8.21)

Найдем теперь главные формы колебаний. Запишем уравнение (8.14) в следующем виде:

$$y_{k}(x) = \frac{Q_{0}}{s_{k}^{3}EJ} \left[\frac{y_{0}' s_{k}^{2} EJ}{Q_{0}} B_{sx} - D_{sx} \right].$$

Из уравнения

$$\frac{\mathbf{y}_0'}{\mathbf{s}_k}\mathbf{B}_{sl} - \frac{\mathbf{Q}_0}{\mathbf{s}_k^3 \mathbf{E} \mathbf{J}}\mathbf{D}_{sl} = 0$$

найдем

$$\frac{y_0' s_k^2 E J}{Q_0} = \frac{D_{sl}}{B_{sl}} = 1$$

Таким образом,

$$y_k(x) = \frac{Q_0}{s_k^3 E J} \sin s_k x$$
. (8.22)

Форма колебаний (8.22) имеет вид синусоиды с полуволнами (рис. 8.2).

Для балок с другими граничными условиями (рис. 8.1, б, в, г) задачи определения частот и форм свободных колебаний решаются аналогично.

Рис. 8.2. Главные формы колебаний шарнирно опертой балки

8.2.4. Вынужденные колебания бруса

Предполагаем, что брус загружен поперечной нагрузкой, изменяющейся по гармоническому закону

$$q(x,t) = q(x)\sin\theta t, \qquad (8.23)$$

где θ – частота вынужденных колебаний; q(x) – амплитудная функция нагрузки, зависящая только от X.

С учетом (8.23) дифференциальное уравнение (8.5) принимает следующий вид:

$$EJ \frac{\partial^4 y}{\partial x^4} + m \frac{\partial^2 y}{\partial t^2} = -q(x) \sin \theta t.$$
(8.24)

Решение дифференциального уравнения (8.24) без правой части, определяющее свободные колебания бруса, получено в п. 8.3.1. Здесь мы найдем частные решения (8.24) (с правой частью), которые и будут давать вынужденные колебания при вибрационной нагрузке (8.23). Решение (8.24) будем искать в виде

$$y(x,t) = y(x)\sin\theta t, \qquad (8.25)$$

где Y(X) – неизвестная амплитудная функция прогибов.

Подставив (8.25) в исходное уравнение (8.24), получим для амплитудного состояния ($\sin \Theta t = \pm 1$)

$$\frac{\partial^4 y}{\partial x^4} - s^4 y = -\frac{q(x)}{EJ} , \qquad (8.26)$$

где

$$s^4 = \frac{m\theta^2}{EJ}.$$
 (8.27)

В отличие от свободных колебаний (8.12), здесь *S* включает частоту возмущающей силы (предполагаем, что частота возмущающей силы находится достаточно далеко от резонансной зоны).

Решение уравнения (8.26) без правой части можно записать по (8.14), поскольку уравнение (8.26) без правой части сходно с уравнением (8.11). Тогда общее решение (полный интеграл) уравнения (8.26) при $q(x) = q_0 = q = \text{const}$ будет иметь следующий вид:

$$y(x) = y_0 A_{sx} + \frac{y_0'}{s} B_{sx} - \frac{M_0}{s^2 E J} C_{sx} - \frac{Q_0}{s^3 E J} D_{sx} - \frac{q}{s^4 E J} (A_{sx} - 1). \quad (8.28)$$

Как и ранее, продифференцировав последовательно (8.28) по X, найдем

$$y'_{x} = sy_{0}D_{sx} + y'_{0}A_{sx} - \frac{M_{0}}{sEJ}B_{sx} - \frac{Q_{0}}{s^{2}EJ}C_{sx} - \frac{q}{s^{3}EJ}D_{sx}; \qquad (8.29)$$

$$M_{x} = -s^{2}EJ y_{0}C_{sx} - sEJ y_{0}D_{sx} + M_{0}A_{sx} + \frac{Q_{0}}{s}B_{sx} + \frac{q}{s^{2}}C_{sx}; \quad (8.30)$$

$$Q_{x} = -s^{3}EJ \ y_{0}B_{sx} - s^{2}EJ \ y_{0}C_{sx} + sM_{0}D_{sx} + Q_{0}A_{sx} + \frac{q}{s}B_{sx}.$$
 (8.31)

В уравнениях (8.28) – (8.31), как и ранее (см. также уравнения (8.14), (8.16) - (8.18)), y_0 , y'_0 , M_0 , Q_0 – начальные параметры (в прил. 2 приведены значения указанных параметров для однопролетных балок с различными закреплениями и различной нагрузкой), A_{sx} , B_{sx} , C_{sx} , D_{sx} - функции Крылова.

Уравнения (8.28) – (8.31) для бруса, загруженного равномерно распределенной нагрузкой, сосредоточенной нагрузкой и сосредоточенным моментом (рис. 8.3), на основании принципа суперпозиции записываются следующим образом:

Рис. 8.3. Схема нагружения бруса

$$\begin{aligned} y(x) &= y_0 A_{sx} + \frac{y'_0}{s} B_{sx} - \frac{M_0}{s^2 EJ} C_{sx} - \frac{Q_0}{s^3 EJ} D_{sx} + \frac{q}{|s^4 EJ} (A_{s(x-a)} - 1) - |_2 \\ &- \frac{q}{s^4 EJ} (A_{s(x-b)}|_3^{-1}) + \frac{F}{s^3 EJ} D_{s(x}|_4^{C}) - \frac{M}{s^2 EJ} C_{s(x-d)}|_5 ; \quad (8.32) \\ y'(x) &= sy_0 D_{sx} + y'_0 A_{sx} - \frac{M_0}{s EJ} B_{sx} - \frac{Q_0}{s^2 EJ} C_{sx} + \frac{q}{|s^3 EJ} D_{s(x-a)} - |_2 \\ &- \frac{q}{s^3 EJ} D_{s|x-b} + \frac{F}{s^2 EJ} C_{s(x}|_b^{b)} - \frac{M}{s EJ} B_{s(x-d)}|_5 ; \quad (8.33) \\ M_x &= -s^2 EJ y_0 C_{sx} - s EJ y'_0 D_{sx} + M_0 A_{sx} + \frac{Q_0}{s} B_{sx} - \frac{q}{|s^2} C_{s(x-a)} + |_2 \\ &+ \frac{q}{s^2} C_{\frac{1}{|3}} - \frac{F}{s} B_{s(x|-c)} + M A_{s(x-d)}|_5 ; \quad (8.34) \end{aligned}$$

$$Q_{x} = -s^{3}EJ \ y_{0}B_{sx} - s^{2}EJ \ y_{0}C_{sx} + sM_{0}D_{sx} + Q_{0}A_{sx} - \frac{q}{b}B_{s(x-a)} + \frac{q}{s}B_{s(x-b)} - FA_{s(x}|_{-c)} + sMD_{s(x-d)}|_{5}.$$
(8.35)

Рассмотрим подробнее порядок составления уравнения (8.32). Так как на первом участке (рис. 8.3) нагрузка отсутствует, то уравнение изогнутой оси для него выражается решением однородного уравнения (8.14). Таким образом, для первого участка балки уравнение изогнутой оси определяется выражением, расположенным левее символа 1. Для того чтобы получить уравнение изогнутой оси на втором участке, к уравнению изогну-

той оси на первом участке добавим член, учитывающий влияние равномерно распределенной нагрузки (8.28), изменив знак перед ним на противоположный (напоминаем, что положительное направление нагрузки принято снизу вверх). Чтобы записать уравнение изогнутой оси на третьем участке, продолжим заданную равномерно распределенную нагрузку на третий участок и введем компенсирующую нагрузку такой же интенсивности. На четвертом и пятом участках добавим члены, учитывающие влияние сосредоточенной нагрузки и момента. Уравнения (8.32) – (8.35) являются универсальными. С их помощью можно описать изогнутую ось, угол поворота, изгибающий момент и поперечную силу на каждом участке, при этом условия сопряжения смежных участков автоматически удовлетворяются.

8.3. Продольные колебания прямых брусьев

8.3.1. Дифференциальное уравнение продольных колебаний

Рассмотрим однородный идеально прямой стержень (брус) постоянного сечения, испытывающий деформации растяжения-сжатия, вызванные осевым продольным воздействием на конце (рис. 8.4).

Рис. 8.4. К выводу дифференциального уравнения продольных колебаний

Обозначим продольное перемещение сечения с координатой X через u(x,t), а соседнего с координатой x + dx соответственно через u(x + dx, t). Относительное удлинение бесконечно малого элемента между этими сечениями будет

$$\varepsilon = \frac{u(x + dx, t) - u(x, t)}{dx} = \frac{\partial u}{\partial x} . \qquad (8.36)$$

Соответственно напряжение

$$\sigma = E \varepsilon = E \frac{\partial u}{\partial x} . \tag{8.37}$$

Продольная сила

$$N = \sigma A = E A \frac{\partial u}{\partial x} . \tag{8.38}$$

Равновесие бесконечно малого элемента

$$-N + \left(N + \frac{\partial N}{\partial x} dx\right) - m dx \frac{\partial^2 u}{\partial t^2} = 0 . \qquad (8.39)$$

Отсюда

$$\frac{\partial N}{\partial x} = m \frac{\partial^2 u}{\partial t^2}, \qquad (8.40)$$

где *m* – масса единицы длины стержня.

С учетом (8.38) будем иметь дифференциальное уравнение продольных колебаний

$$\frac{\partial}{\partial x} \left[EA \frac{\partial u}{\partial x} \right] = m \frac{\partial^2 u}{\partial t^2} . \tag{8.41}$$

Для стержней постоянного сечения

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} , \qquad (8.42)$$

где

$$c^2 = \frac{EA}{m}.$$
 (8.43)

Если плотность материала обозначить через P, то $m = \rho A \cdot 1$

И

$$c^2 = \frac{E}{\rho}.$$
 (8.44)

Уравнение (8.42) называется волновым уравнением и в математике относится к так называемым уравнениям гиперболического типа.

8.3.2. Два основных вида решения

Рассмотрим два характерных вида решения, которые допускает это уравнение.

Прежде всего отметим, что выражение

$$u = f(x - ct) \tag{8.45}$$

удовлетворяет уравнению (8.42). Найдем условие, при котором перемещение U_1 сечения с координатой x + dx при времени t + dt равно перемещению U сечения с координатой X при времени t. Это позволит определить движение продольной волны перемещений по стержню. Очевидно, что для этого должно выполняться равенство

$$\mathrm{d}\boldsymbol{x} - \boldsymbol{c}\mathrm{d}\boldsymbol{t} = 0 \,. \tag{8.46}$$

Здесь dx – путь, пройденный волной за время dt. Следовательно,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = c. \tag{8.47}$$

Это значит, что величина *C* есть скорость распространения продольной волны по стержню, соответствующей закону (8.45).

Например, для стали $E \cong 2 \cdot 10^5 \,\mathrm{M\Pi a} \,(2 \cdot 10^{11} \,\mathrm{H/m^2}), \rho = 7800 \,\mathrm{kr/m^3}$ и $c = \sqrt{2 \cdot 10^{11}/7800} = 5100 \,\mathrm{m/c}$.

Если вместо f(x - ct) взять функцию $\varphi(x + ct)$, то и она удовлетворяет уравнению (8.42), только для нее скорость будет отрицательной, т. е. направленной в другую сторону. Функции f и φ определяют форму волн. Они могут быть найдены из условий контакта тела, воздействующего на левый конец стержня, и равенства нулю смещения в заделке (рис. 8.4).

Как некоторую, довольно близкую, аналогию напомним распространение эффекта продольного удара локомотива в длинном поезде. Звук от последовательно соударяющихся вагонов позволяет ощутимо проследить за продольным движением ударной волны. Изучение распространения волн деформации в средах позволяет объяснить многие явления, встречающиеся в инженерной практике. Например, в длинном железобетонном стержне, имеющем свободный конец, продольная волна сжатия, созданная ударом, может вызвать появление поперечных трещин. Это объясняется тем, что продольная волна сжатия отражается от свободного конца, как такая же волна, но уже растяжения. Эта волна и может вызвать разрыв материала.

Большое значение теория распространения волн деформаций имеет в сейсмологии, акустике, описании явления удара, в вопросах инженерного использования взрыва и т. д.

Рассмотрим теперь второй вид решения уравнения (8.42). Будем искать решение в таком виде:

$$u(x,t) = \sum_{k=1}^{\infty} u_k(x) T_k(t), \qquad (8.48)$$

где $U_k(x) = \phi$ ункция, зависящая от X; $T_k(t) = \phi$ ункция времени.

Подставляя один член ряда (8.48) в уравнение (8.42), получим

$$u_k(x)\frac{\partial^2 T_k}{\partial t^2} = c^2 \frac{\partial^2 u_k}{\partial x^2} T_k(t)$$

Разделив переменные, будем иметь два независимых дифференциальных уравнения:

$$\frac{\partial^2 T_k}{\partial t^2} + \omega_k^2 T_k(t) = 0; \qquad (8.49)$$

$$\frac{\partial^2 u_k}{\partial x^2} + \left(\frac{\omega_k}{c}\right)^2 u_k(x) = 0.$$
(8.50)

Решение уравнения (8.49)

$$T_k(t) = A_k \sin \omega_k t + B_k \cos \omega_k t \,. \tag{8.51}$$

Постоянные A_k и B_k определяются из начальных условий движения: при t=0 $T_k(0) = y_k(0)$, $T'_k(0) = y'_k(0)$. С учетом начальных условий уравнение (8.51) приобретает вид

$$T_k(t) = \frac{y'_k(0)}{\omega_k} \sin \omega_k t + y_k(0) \cos \omega_k t.$$
(8.52)

Решение уравнения (8.50)

$$u_k(x) = C_k \sin \frac{\omega_k}{c} x + D_k \cos \frac{\omega_k}{c} x.$$
(8.53)

Из выражения (8.53) видно, что для конкретного X колебания во времени совершаются по гармоническому закону с частотой ω_k . Если к X в (8.53) прибавить величину $l_k = 2\pi C/\omega_k$, то $u_k(x+l_k) = u_k(x)$. Следовательно, l_k – длина волны продольных колебаний $u_k(x)$, а C – скорость ее распространения.

Произвольные постоянные в (8.53) определяются из граничных условий на концах стержня. Выразим C_k и D_k через начальные параметры $u_k(0)$ и $N_k(0)$. Для этого составим выражение для продольной силы с учетом (8.38):

$$N_k(x) = EA \frac{\partial u_k}{\partial x} = EA \left(C_k \frac{\omega_k}{c} \cos \frac{\omega_k x}{c} - D_k \frac{\omega_k}{c} \sin \frac{\omega_k x}{c} \right). \quad (8.54)$$

Записываем граничные условия на левом конце (в начале координат):

при
$$x = 0$$
 $U_k(x) = U_k(0)$, $N_k(x) = N_k(0)$.

Отсюда получаем

$$D_k = u_k(0), \quad C_k = N_k(0) \left(\frac{c}{\omega_k}\right) \frac{1}{EA}.$$
(8.55)

С учетом найденных произвольных постоянных C_k и D_k имеем

$$u_k(x) = \frac{N_k(0)}{EA} \left(\frac{c}{\omega_k}\right) \sin \frac{\omega_k x}{c} + u_k(0) \cos \frac{\omega_k x}{c} ; \qquad (8.56)$$

$$N_k(x) = N_k(0)\cos\frac{\omega_k x}{c} - EAu_k(0)\frac{\omega_k}{c}\sin\frac{\omega_k x}{c} . \qquad (8.57)$$

Один из параметров $U_k(0)$ или $N_k(0)$ всегда известен, а второй параметр определяется из граничных условий на правом конце стержня (при x = l).

Определим частоты и главные формы собственных продольных колебаний консольного стержня (рис. 8.5).

Рис. 8.5. К определению частот и форм продольных колебаний

При x = 0 $U_k(0) = 0$. Тогда уравнения (8.56) и (8.57) запишутся следующим образом:

$$u_k(x) = \frac{N_k(0)}{EA} \left(\frac{c}{\omega_k}\right) \sin \frac{\omega_k x}{c} ;$$
$$N_k(x) = N_k(0) \cos \frac{\omega_k x}{c} .$$

 $\prod p_{\mathcal{H}} x = I \quad N_k(I) = 0,$

$$N_k(l) = N_k(0)\cos\frac{\omega_k l}{c} = 0$$

 $N_k(0) \neq 0$, следовательно, $\cos \frac{\omega_k l}{c} = 0$. А это возможно тогда, когда

$$\frac{\omega_k l}{c} = \frac{k\pi}{2}, \quad k = 1, 2, \dots$$

С учетом (8.43)

$$\omega_k = \frac{k \pi}{2I} \sqrt{\frac{EA}{m}}, \quad k = 1, 2, \dots$$
 (8.58)

Форма колебаний определяется уравнением (8.53) с учетом того, что $D_k = u_k(0) = 0$:

$$u_k(x) = A_k \sin \frac{k \pi x}{2l}$$
 (8.59)

Таким образом, уравнения (8.58) и (8.59) определяют спектр частот и форм собственных продольных колебаний рассматриваемой континуальной модели стержня. В отличие от дискретных систем, обладающих конечным числом степеней свободы, этот спектр бесконечен.

8.3.3. Вынужденные продольные колебания

Предполагаем, как и ранее, что брус загружен продольной нагрузкой, изменяющейся по гармоническому закону:

$$F(\mathbf{x}, t) = F_{\mathbf{x}} \sin \theta t \,. \tag{8.60}$$

Решение дифференциального уравнения (8.42) будем искать в таком виде:

$$u(x,t) = u(x)\sin\theta t. \tag{8.61}$$

Подставим (8.61) в (8.42). В результате получим

$$-u(x)\theta^2 \sin \theta t = c^2 \sin \theta t \frac{\partial^2 u}{\partial x^2},$$

ИЛИ

$$\frac{\mathrm{d}^2 u}{\mathrm{d} x^2} = \left(\frac{\theta}{c}\right)^2 u(x) = 0.$$
(8.62)

Это уравнение совпадает с уравнением (8.50), если в нем заменить

 ω_k на Θ , что позволяет на основе (8.56) и (8.57) записать готовые выражения

$$u(x) = \frac{N(0)}{EA} \left(\frac{c}{\theta}\right) \sin \frac{\theta x}{c} + u(0) \cos \frac{\theta x}{c} ; \qquad (8.63)$$

$$N(x) = N(0)\cos\frac{\theta x}{c} - EAu(0)\left(\frac{\theta}{c}\right)\sin\frac{\theta x}{c} . \qquad (8.64)$$

В тех случаях, когда на стержень действуют продольные нагрузки в промежуточных точках между концами или где-либо задано вынужденное смещение $\Delta u \sin \Theta t$, выражения (8.63) и (8.64) справедливы только для первого участка.

В качестве примера рассмотрим расчет консольного стержня, загруженного на конце продольной силой, изменяющейся по закону синуса (рис. 8.6).

Рис. 8.6. К расчету стержня, испытывающего вынужденные продольные колебания

Определим начальные параметры. При x = 0 u(x) = 0. Из уравнения (8.63) получаем u(0) = 0. При x = l N(l) = F. Используем уравнение (8.64):

$$N(0)\cos\frac{\theta I}{c} = F$$
.

Отсюда

$$N_0 = \frac{F}{\cos\frac{\theta I}{C}} \; .$$

Имеем окончательно

$$u(x) = \frac{F}{EA} \left(\frac{c}{\theta}\right) \frac{\sin \frac{\theta x}{c}}{\cos \frac{\theta l}{c}};$$
$$N(x) = F \frac{\cos \frac{\theta x}{c}}{\cos \frac{\theta l}{c}}.$$

В заключение этого пункта отметим, что мы рассмотрели поперечные и продольные колебания бруса и вывели два дифференциальных уравнения (8.5) и (8.42). Таким образом, мы предположили, что брус совершает или только продольные, или только поперечные колебания. В действительности возможность этих двух движений может наступить одновременно. Мы не будем давать здесь дифференциальных уравнений связанных продольных и поперечных колебаний, потому что эта связь настолько слаба, что практически для прямых стержней оба вида колебаний всегда можно рассматривать по отдельности. Для рамных конструкций раздельное вычисление продольных и поперечных колебаний, вообще говоря, уже невозможно, так как при фактических формах собственных колебаний элементы совершают как поперечные, так и продольные движения, причем величина тех и других перемещений одного порядка. Приближенно, однако, можно пренебрегать изгибающим действием продольное ной силы и считаться только с вызывающим его сжатием.

8.4. Влияние постоянной осевой силы на поперечные колебания бруса

Рассмотрим брус с поперечной нагрузкой, дополнительно сжатый или растянутый постоянными силами N, приложенными по концам. Растягивающую силу N будем принимать со знаком плюс, а сжимающую – со знаком минус. Исходим из дифференциального уравнения (8.1). В рассматриваемом в этом подразделе случае изгибающий момент равен

$$M = M^0 \mp N y, \qquad (8.65)$$

где *М*⁰ – изгибающий момент от поперечных нагрузок. Верхний знак относится к растянуто-изогнутому брусу, а нижний – к сжато-изогнутому.

Следуя выкладкам, приведенным в п. 8.2.1, получим дифференциальные уравнения вынужденных и свободных колебаний бруса с постоянной осевой силой N:

$$EJ \frac{\partial^4 y}{\partial x^4} + m \frac{\partial^2 y}{\partial t^2} \mp N \frac{\partial^2 y}{\partial x^2} = -q(x,t); \qquad (8.66)$$

$$EJ \frac{\partial^4 y}{\partial x^4} + m \frac{\partial^2 y}{\partial t^2} \mp N \frac{\partial^2 y}{\partial x^2} = 0.$$
(8.67)

После разделения переменных (см. п. 8.2.1) придем к двум независимым друг от друга дифференциальным уравнениям. Дифференциальное уравнение функции $\Phi_k(t)$, зависящей от времени, совпадает с (8.10), а дифференциальное уравнение главной формы колебаний имеет вид

$$\frac{\partial^4 \mathbf{y}_k}{\partial \mathbf{x}^4} \mp \frac{N}{EJ} \frac{\partial^2 \mathbf{y}_k}{\partial \mathbf{x}^2} - \mathbf{s}_k^4 \mathbf{y}_k = 0, \qquad (8.68)$$

где S_k^4 имеет значение такое же, как и в (8.12).

Прежде чем получить общее решение уравнения (8.68), составим его характеристическое уравнение:

$$r^{4} \mp \frac{N}{EJ}r^{2} - s_{k}^{4} = 0.$$
 (8.69)

Корни этого уравнения равны

$$r_{12} = \pm a_k$$
, $r_{34} = \pm b_k i$,
283

где

$$a_{k} = \sqrt{\pm \frac{N}{2EJ} + \sqrt{\frac{N^{2}}{4(EJ)^{2}} + s_{k}^{4}}}, \quad b_{k} = \sqrt{\pm \frac{N}{2EJ} + \sqrt{\frac{N^{2}}{4(EJ)^{2}} + s_{k}^{4}}}.$$
 (8.70)

Отметим, что

$$a_k^2 - b_k^2 = \pm \frac{N}{EJ}$$
, $a_k^2 + b_k^2 = 2\sqrt{\frac{N^2}{4(EJ)^2} + s_k^4}$.

В соответствии с корнями характеристического уравнения, решение (8.68) будет иметь вид

$$y_k(x) = y_k(0)I_x + y'_k(0)J_x - \frac{M_k(0)}{EJ}K_x - \frac{Q_k(0)}{EJ}L_x, \qquad (8.71)$$

где

$$I_{x} = \frac{1}{a_{k}^{2} + b_{k}^{2}} \left(b_{k}^{2} \operatorname{ch} a_{k} x + a_{k}^{2} \cos b_{k} x \right) ;$$

$$J_{x} = \frac{1}{a_{k}^{2} + b_{k}^{2}} \left(\frac{b_{k}^{2}}{a_{k}} \operatorname{sh} a_{k} x + \frac{a_{k}^{2}}{b_{k}} \sin b_{k} x \right) ;$$

$$K_{x} = \frac{1}{a_{k}^{2} + b_{k}^{2}} \left(\operatorname{ch} a_{k} x - \cos b_{k} x \right) ;$$

$$L_{x} = \frac{1}{a_{k}^{2} + b_{k}^{2}} \left(\frac{1}{a_{k}} \operatorname{sh} a_{k} x - \frac{1}{b_{k}} \sin b_{k} x \right) .$$
(8.72)

Как и в п. 8.2.3, продифференцировав уравнения (8.71) по X, получим уравнения для определения угла поворота, изгибающего момента, поперечной силы. Напомним, что изгибающий момент и поперечная сила связаны с упругой линией следующими зависимостями:

$$y_k''(x) = -\frac{M_k(x)}{EJ}, \quad y_k'''(x) = -\frac{Q_k(x)}{EJ}.$$

Определим теперь частоты и главные формы свободных колебаний балок, показанных на рис. 8.7.

Рис. 8.7. К определению частот и форм свободных колебаний шарнирно опертых балок, загруженных по концам постоянными осевыми силами

Начальные параметры:

при
$$x = 0$$
 $y_k(0) = 0$, $M_k(0) = 0$;

при
$$x = l$$
 $y_k(l) = 0$, $M_k(l) = 0$.

Далее записываем уравнения прогиба и изгибающего момента для противоположного конца балки (x = l), составляем определитель полученной системы уравнений и приравниваем его нулю. Частотное уравнение имеет вид

$$\sin a_k I \cdot \sin b_k I = 0$$
.

Далее, следуя рассуждениям, приведенным в п. 8.2.3, получаем

$$\omega_k = \omega_k^0 \sqrt{1 \pm \frac{N}{F_{\rm kp}}} , \quad k = 1, 2, \dots ,$$
 (8.73)

где (см. (8.21))

$$\omega_k^0 = \frac{k^2 \pi^2}{l^2} \sqrt{\frac{EJ}{m}} ,$$

*F*_{кр} – Эйлерова критическая сила,

$$F_{\rm kp} = \frac{k^2 \pi^2 E J}{I^2} \; .$$

Из равенства (8.73) можно сделать следующие выводы: растягивающая сила (верхний знак) увеличивает частоту свободных колебаний, а сжимающая – уменьшает; частота колебаний уменьшается при возрастании продольной силы, при $N \to F_{\kappa p}$ частота колебаний равна нулю.

Уравнение (8.73) интересно возможностью более широкого практического применения. Из этого уравнения следует, что, наблюдая поперечные колебания стержня, можно судить о степени его устойчивости.

Главная форма колебаний определяется обычным способом (см. рис. 8.2) и здесь она имеет вид синусоиды с полуволнами.

Задача о вынужденных колебаниях, вызванных поперечной нагрузкой, изменяющейся по гармоническому закону, решается в соответствии с п. 8.2.4.

Общее решение уравнения (8.66) имеет вид

$$y_{x} = y_{0}I_{x} + y_{0}'J_{x} - \frac{M_{0}}{EJ}K_{x} - \frac{Q_{0}}{EJ}L_{x} - \frac{q}{s^{4}EJ}(I_{x} - 1).$$
(8.74)

8.5. Расчет неразрезных балок на вибрационные воздействия

8.5.1. Общие теоремы

Раскрытие статической неопределимости систем при динамическом расчете может быть проведено различными путями. Здесь мы рассмотрим применение двух основных методов: метода сил и метода перемещений. Будем далее под динамическим перемещением понимать перемещение, ме-

няющееся во времени по закону

$$\Delta_{km}(t) = \Delta_{km} \sin \theta t \,. \tag{8.75}$$

При этом

$$\frac{\mathrm{d}^2 \Delta_{km}(t)}{\mathrm{d} t^2} = -\theta^2 \Delta_{km} \sin \theta t = -\theta^2 \Delta_{km}(t) \,. \tag{8.76}$$

Рассмотрим какую-либо систему в некоторый момент времени, находящуюся под различными вибрационными нагрузками с одинаковой частотой в двух состояниях «k» и «m» (рис. 8.8).

Рис. 8.8. Общие теоремы о работе и перемещениях при вибрационной нагрузке

Примем для исследований принцип возможных перемещений. Рассмотрим работу сил состояния «k» на перемещениях состояния «m», а затем наоборот. Во время колебаний на систему действуют силы инерции масс, изменяющиеся по закону sin θt :

$$\sum F_{k} \sin \theta t \Delta_{km}(t) + \sum \int \left(m \theta^{2} \Delta_{mk}(t) \, \mathrm{d}s \right) \Delta_{km}(t) = \sum \int M_{k}(t) \frac{M_{m}(t)}{EJ} \, \mathrm{d}s; \quad (8.77)$$
$$\sum F_{m} \sin \theta t \Delta_{mk}(t) + \sum \int \left(m \theta^{2} \Delta_{km}(t) \, \mathrm{d}s \right) \Delta_{mk}(t) = \sum \int M_{m}(t) \frac{M_{k}(t)}{EJ} \, \mathrm{d}s. \quad (8.78)$$

В выражениях (8.77) и (8.78) учтены только изгибающие моменты. По равенству правых частей написанных выражений получаем уравнение взаимности работ вибрационных нагрузок:

$$\sum (F_k \sin \theta t) \Delta_{km}(t) = \sum (F_m \sin \theta t) \Delta_{mk}(t) . \qquad (8.79)$$

Если в каждом состоянии будет по одной силе, причем

$$F_k \sin \theta t = F_m \sin \theta t$$

то

$$\Delta_{km}(t) = \Delta_{mk}(t), \qquad (8.80)$$

ИЛИ

$$\Delta_{km}\sin\theta t = \Delta_{mk}\sin\theta t \,. \tag{8.81}$$

Аналогично можно установить при единичных амплитудных значениях действующих сил равенства, встречающиеся ранее (см. п. 5.8):

 $\delta_{km}\sin\theta t = \delta_{mk}\sin\theta t$;

$$r_{km}\sin\theta t = r_{mk}\sin\theta t; \qquad (8.82)$$
$$\delta_{km}\sin\theta t = -r_{mk}\sin\theta t.$$

Рассмотрим теперь работу единичной статической силы $F_k = 1$ в состоянии «*k*» на действительных динамических перемещениях состояния «*m*», вызванных динамической нагрузкой $F_m(t)$ (см. (8.23), рис. 8.9):

Рис. 8.9. Работа единичной статической силы F_k на динамических перемещениях

$$1 \cdot \Delta_{km}(t) = \sum \int M_k(t) \frac{M_m(t)}{EJ} \mathrm{d}s, \qquad (8.83)$$

где M_k – выражение изгибающих моментов от единичной силы $F_k = 1$; $M_m(t)$ – выражение изгибающих моментов от динамической нагрузки (8.30).

8.5.2. Расчет неразрезных балок, загруженных одновременно на нескольких пролетах, методом сил

Рассмотрим неразрезные балки на абсолютно жестких опорах, находящиеся под действием гармонически изменяющихся с частотой Θ сил и имеющих постоянное поперечное сечение *EJ* = const (рис. 8.10, a).

Рис. 8.10. Схемы неразрезной балки (а) и основной системы (б)

Основная система (рис. 8.10, б) получается постановкой необходимого числа шарниров над опорами. Если неразрезная балка на одном или обоих концах имеет защемления, то для сокращения числа неизвестных можно основную систему образовать постановкой шарниров только над промежуточными опорами (рис. 8.10, б). Так как неизвестные левее M_{n-1} и правее M_{n+1} (рис. 8.11) не будут вызывать изгиба пролетов I_n и I_{n+1} , то они и не будут давать перемещений по направлению момента M_n .

Рис. 8.11. Схема двух смежных пролетов неразрезной балки в основной системе

Поскольку основная система метода сил состоит из стандартных элементов, то определение начальных параметров y_0, y'_0, M_0, Q_0 , входящих в уравнения (8.28) – (8.31), не представляет больших затруднений. В прил. 2 приведены значения указанных параметров для стандартных элементов.

Общее каноническое уравнение динамических перемещений по направлению моментов M_n (рис. 8.11) будет иметь вид

$$\delta_{n,n-1}M_{n-1} + \delta_{nn}M_n + \delta_{n,n+1}M_{n+1} + \Delta_{nF} = 0.$$
(8.84)

Это уравнение трех моментов динамики сооружений целиком соответствует известному уравнению трех моментов статики сооружений (см. п. 7.1), причем последнее можно рассматривать как частный случай первого: при статической нагрузке $\theta = 0$, sI = 0. Число уравнений (8.84) равно числу неизвестных.

Определим коэффициенты и свободные члены уравнения (8.84) (рис. 8.12).

Рис. 8.12. К определению коэффициентов и свободных членов системы уравнений (8.84)
Здесь $\delta_{n,n-1}$ – амплитудное значение угла поворота левого пролета на *n*-й опоре, вызванное $M_{n-1} = 1$ (рис. 8.12, а). Искомый угол поворота определяется по таблице стандартных решений. Для удобства вычислений пролет I_n разворачиваем на 180° в горизонтальной плоскости так, чтобы угол поворота оказался в начале координат. Тогда в соответствии со схемой 2 прил. 2 имеем

$$\delta_{n,n-1} = y'_n = \frac{1}{sEJ} \frac{D_{sl_n}}{B_{sl_n}^2 - D_{sl_n}^2}.$$
 (8.85)

Аналогично определяем амплитудное значение взаимного угла поворота сечений левого и правого пролетов на опоре n от $M_n = 1$ (рис. 8.12, б). В соответствии со схемой 1 прил. 2 получаем

$$\delta_{nn} = y'_{n+1} + y'_{n} = \frac{1}{sEJ} \frac{B_{sl_{n+1}}C_{sl_{n+1}} - A_{sl_{n+1}}D_{sl_{n+1}}}{B_{sl_{n+1}}^2 - D_{sl_{n+1}}^2} + \frac{1}{sEJ} \frac{B_{sl_{n}}C_{sl_{n}} - A_{sl_{n}}D_{sl_{n}}}{B_{sl_{n}}^2 - D_{sl_{n}}^2} .$$
(8.86)

Амплитудное значение угла поворота правого пролета (рис.8.12, в) на опоре n от $M_{n+1} = 1$ определяется следующим образом (см. прил. 2, схема 2):

$$\delta_{n,n+1} = y'_{n+1} = \frac{1}{sEJ} \frac{D_{sl_{n+1}}}{B_{sl_{n+1}}^2 - D_{sl_{n+1}}^2} .$$
(8.87)

В формулах (8.85) – (8.87) A_{sl_n} , $A_{sl_{n+1}}$, B_{sl_n} , $B_{sl_{n+1}}$, C_{sl_n} , $C_{sl_{n+1}}$, D_{sl_n} , $D_{sl_{n+1}} - \phi$ ункции влияния (функции Крылова), определяемые по прил. 1 в зависимости от значений sl_n и sl_{n+1} .

Определение амплитудного значения угла поворота Δ_{nF} на опоре *n* от внешней нагрузки связано с рассмотрением заданной вибрационной нагрузки в каждом конкретном случае. Геометрически Δ_{nF} определяется как сумма углов поворота на опоре двух смежных балок (рис. 8.12, г):

$$\Delta_{nF} = y'_n + y'_{n+1}.$$

Формулы для углов поворота Y'_n и Y'_{n+1} от заданной вибрационной нагрузки приведены в прил. 2. Здесь, как и ранее, при вычислении Y'_n можно пролет I_n повернуть на 180° в горизонтальной плоскости и определить Y'_n как начальный параметр.

После решения системы уравнений (8.84) и определения опорных моментов каждый пролет неразрезной балки рассматривается под действием нагрузки и найденных опорных моментов.

Прогиб, угол поворота, изгибающий момент и поперечная сила в любом сечении пролета определяются уравнениями (8.28) – (8.31).

Канонические уравнения свободных колебаний получим, полагая в

(8.54) свободные члены равными нулю, т.е.

$$\delta_{n,n-1}M_{n-1} + \delta_{nn}M_n + \delta_{n,n+1}M_{n+1} = 0.$$
(8.88)

В этих уравнениях частоты действующих нагрузок заменяются частотами свободных колебаний ω_k (k = 1, 2, ...). Уравнения (8.88) однородные, а потому в общем случае нужно определитель системы этих уравнений приравнять нулю, после раскрытия определителя получить уравнения частот свободных колебаний:

$$\boldsymbol{\boldsymbol{\varTheta}} = \begin{vmatrix} \boldsymbol{\delta}_{11} & \boldsymbol{\delta}_{12} & \dots & \boldsymbol{\delta}_{16} \\ \boldsymbol{\delta}_{21} & \boldsymbol{\delta}_{22} & \dots & \boldsymbol{\delta}_{26} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \boldsymbol{\delta}_{01} & \boldsymbol{\delta}_{02} & \dots & \boldsymbol{\delta}_{06} \end{vmatrix} = \boldsymbol{\diamond}$$

$$(8.89)$$

8.5.2.1. Пример расчета неразрезной балки методом сил

Расчетная схема заданной балки показана на рис. 8.13, а; основная система – на рис. 8.13, б; $s = 0.5 \text{ m}^{-1}$, EJ = const.

Рис. 8.13. Расчетная схема заданной балки (а) и основная система (б)

Каноническое уравнение метода сил имеет вид

$$\boldsymbol{M}_1 \boldsymbol{\delta}_{11} + \boldsymbol{\Delta}_{1F} = \boldsymbol{0}$$

При помощи таблицы стандартных решений (прил. 2) записываем формулы для определения δ_{11} (схема 1 и схема 6) и Δ_{1F} (схема 12):

$$\delta_{11} = \frac{1}{sEJ} \frac{B_{sl_2}C_{sl_2} - A_{sl_2}D_{sl_2}}{B_{sl_2}^2 - D_{sl_2}^2} + \frac{1}{sEJ} \frac{B_{sl_1}D_{sl_1} - C_{sl_1}^2}{A_{sl_1}D_{sl_1} - B_{sl_1}C_{sl_1}} ;$$

$$\Delta_{1F} = \frac{F}{s^2 EJ} \frac{C_{sl_1}D_{sa} - D_{sl_1}C_{sa}}{A_{sl_1}D_{sl_1} - B_{sl_1}C_{sl_1}} .$$

Определяем функции влияния по прил. 1:

$$SI_1 = 0.5 \cdot 4 = 2$$
:
 $A_{SI_1} = 1.67302$; $B_{SI_1} = 2.26808$; $C_{SI_1} = 2.08917$; $D_{SI_1} = 1.35878$
 $Sa = 0.5 \cdot 2 = 1$:
 $A_{Sa} = 1.04169$; $B_{Sa} = 1.00833$; $C_{Sa} = 0.50139$; $D_{Sa} = 0.16686$;

 $sI_2 = 0.5 \cdot 6 = 3$: $A_{sI_2} = 4,53883; \quad B_{sI_2} = 5,07949; \quad C_{sI_2} = 5,52882; \quad D_{sI_2} = 4,93837.$

По приведенным выше формулам находим амплитудное значение взаимного угла поворота сечений левого и правого пролетов на опоре 1 от $M_1 = 1$ и внешней нагрузки:

$$\delta_{11} = \frac{4,530693}{sEJ}, \quad \Delta_{1F} = \frac{26,957557}{sEJ}$$

Из канонического уравнения определяем M_1 , кH·м:

$$M_1 = -\frac{\Delta_{1F}}{\delta_{11}} = -5,94998554 \cong -5,945$$
.

Проделаем дальнейшие расчеты. Построим эпюру моментов. Расчетные схемы пролетов показаны на рис. 8.14, а, б.

Рис. 8.14. Расчетные схемы пролетов

Согласно уравнению (8.34) для первого пролета имеем

$$\boldsymbol{M}_{\boldsymbol{X}} = \boldsymbol{M}_{0} \boldsymbol{A}_{\boldsymbol{S}\boldsymbol{X}} + \frac{\boldsymbol{Q}}{\boldsymbol{S}} \boldsymbol{B}_{\boldsymbol{S}\boldsymbol{X}} - \frac{\boldsymbol{F}}{\boldsymbol{S}} \boldsymbol{B}_{\boldsymbol{S}(\boldsymbol{X}-2)} \cdot \left| \frac{\boldsymbol{P}}{\boldsymbol{S}} \right|_{1}$$

Начальные параметры определяем по формулам прил. 2 (схемы 10 и 12):

$$M_{0} = \frac{F}{s} \frac{B_{sl_{1}}D_{sb} - B_{sb}D_{sl_{1}}}{B_{sl_{1}}C_{sl_{1}} - A_{sl_{1}}D_{sl_{1}}} - M_{1} \frac{D_{sl_{1}}}{A_{sl_{1}}D_{sl_{1}} - B_{sl_{1}}C_{sl_{1}}};$$

$$Q_{0} = F \frac{B_{sb}C_{sl_{1}} - A_{sl_{1}}D_{sb}}{B_{sl_{1}}C_{sl_{1}} - A_{sl_{1}}D_{sl_{1}}} + sM_{1} \frac{C_{sl_{1}}}{A_{sl_{1}}D_{sl_{1}} - B_{sl_{1}}C_{sl_{1}}}.$$

Функции влияния $B_{sb} = B_{sa} = 1,00833$, $D_{sb} = D_{sa} = 0,16686$, так как в нашем случае sa = sb.

После вычислений получаем M_0 , кН · м и Q_0 , кН :

$$M_0 = -77,097537 \cong -77,1;$$

 $Q_0 = 71,5765 \cong 71,6.$

Проверим правильность вычисления начальных параметров M_0 и Q_0 . Используем условие: при $x = l_1$ $M_l = -M_1$. По уравнению (8.34) для M_x найдем M_1 , кН · м :

$$\boldsymbol{M}_1 = -77, 1 \cdot 1,67277 + \frac{71,6}{0,5}2,26808 - \frac{100}{0,5}1,00833 = -5,945.$$

Этот результат соответствует значению вычисленного ранее момента $M_{1.}$

Определим теперь величины изгибающих моментов в различных сечениях пролета I_1 .

$$\begin{split} \Pi \mathrm{p}_{\mathrm{H}} & x = 1 \mathrm{m}: \quad sx = 0, 5 \cdot 1 = 0, 5; \\ & A_{\mathrm{sx}} = 1,00261; \quad B_{\mathrm{sx}} = 0,50026; \quad C_{\mathrm{sx}} = 0,12502; \quad D_{\mathrm{sx}} = 0,02084; \\ & M_{\chi} = -5,66 \, \mathrm{\kappa}\mathrm{H} \cdot \mathrm{M} \, . \\ \Pi \mathrm{p}_{\mathrm{H}} & x = 2 \mathrm{m}: \quad sx = 0,5 \cdot 2 = 1,0; \\ & A_{\mathrm{sx}} = 1,04169; \quad B_{\mathrm{sx}} = 1,00833; \quad C_{\mathrm{sx}} = 0,50139; \quad D_{\mathrm{sx}} = 0,16686; \\ & M_{\chi} = 64,079 \, \mathrm{\kappa}\mathrm{H} \cdot \mathrm{M} \, . \\ \Pi \mathrm{p}_{\mathrm{H}} & x = 3 \mathrm{m}: \quad sx = 0,5 \cdot 3 = 1,5; \\ & A_{\mathrm{sx}} = 1,21157; \quad B_{\mathrm{sx}} = 1,56338; \quad C_{\mathrm{sx}} = 0,14083; \quad D_{\mathrm{sx}} = 0,56589; \\ & s(x-2) = 0,5(3-2) = 0,5; \quad B_{s(x-2)} = 0,50026; \\ & M_{\chi} = 30,412 \, \mathrm{\kappa}\mathrm{H} \cdot \mathrm{M} \, . \end{split}$$

Рассмотрим второй пролет неразрезной балки (рис. 8.14, б). Изгибающий момент в любом сечении пролета на основании общего уравнения (8.34) равен

$$M_{x} = -sEJ y'_{0}D_{sx} + M_{0}A_{sx} + \frac{Q_{0}}{s}B_{sx}.$$

Определим начальные параметры y'_0 и Q_0 , входящие в это уравнение. По прил. 2 (схема 1) имеем

$$Q_{0} = sM_{1} \frac{A_{sl_{2}}B_{sl_{2}} - C_{sl_{2}}D_{sl_{2}}}{B_{sl_{2}}^{2} - D_{sl_{2}}^{2}} ;$$

$$y_{0}' = \frac{M_{1}}{sEJ} \frac{B_{sl_{2}}C_{sl_{2}} - A_{sl_{2}}D_{sl_{2}}}{B_{sl_{2}}^{2} - D_{sl_{2}}^{2}} .$$

Значения функций влияния $A_{sl_2}, B_{sl_2}, C_{sl_2}, D_{sl_2}$ определены нами ранее, при вычислении M_1 (см. с. 292).

После вычисления по приведенным формулам получаем

$$Q_0 = -8,9402429 \cong -8,94 \,\mathrm{\kappa H};$$
$$y'_0 = -\frac{23,860043}{sEI} \cong -\frac{23,86}{sEI}.$$

Проверим правильность вычисления начальных параметров. Для этого по уравнению (8.34) для M_x определим изгибающий момент на опоре 2 ($x = l_2$), где он должен быть равен нулю. Убедимся в этом:

$$M_{l_2} = 23,86 D_{sl_2} - 5,945 A_{sl_2} - \frac{8,94}{0,5} B_{sl_2}$$

Функции D_{sl_2} , A_{sl_2} и B_{sl_2} найдены ранее и равны $D_{sl_2} = 4,93837$; $A_{sl_2} = 4,55883$; $B_{sl_2} = 5,07949$. Подставив значения этих функций в уравнение для нахождения M_{l_2} , получим $M_{l_2} = 0$. Следовательно, начальные параметры Y'_0 и Q_0 определены правильно.

Определим теперь величины изгибающих моментов в различных сечениях второго пролета.

По результатам вычислений построим эпюру изгибающих моментов (рис. 8.15, а).

Рис. 8.15. Эпюры моментов от вибрационной (а) и статической (б) нагрузок

Для сравнения на рис. 8.15, б показана эпюра от статического действия нагрузки.

Найдем динамические коэффициенты:

опора **0**: $\mu = \frac{77,1}{66,67} = 1,16$; середина первого пролета: $\mu = \frac{64,079}{58,36} = 1,10$; опора **1**: $\mu = \frac{5,95}{16,67} = 0,356$; середина второго пролета: $\mu = \frac{21,66}{8,33} = 2,60$. Из полученных значений видно, что динамические коэффициенты различны и зависят как от положения нагрузки на балке, так и от положения сечения. Все это указывает на то, что статический расчет с последующим его исправлением путем умножения на единый динамический коэффициент не соответствует расчету на динамические воздействия.

Составим теперь уравнение для определения частот свободных колебаний. Следуя (8.29), положим в каноническом уравнении свободный член $\Delta_{1F} = 0$. Тогда получим частотное уравнение

$$(B_{sl_2}C_{sl_2} - A_{sl_2}D_{sl_2})(A_{sl_1}D_{sl_1} - B_{sl_1}C_{sl_1}) + (B_{sl_2} - D_{sl_2})(B_{sl_1}D_{sl_1} - C_{sl_1}) = 0$$

В это уравнение входит неизвестное *S_k*, связанное с частотой свободных колебаний равенством (8.12):

$$s_k^4 = \frac{m\omega_k^2}{EJ}.$$

Корни уравнения частот следует определять на ЭВМ с помощью специально составленной программы, в которой реализуется, например, метод половинного деления. Наименьшему корню соответствует первая основная частота свободных колебаний балки. При k = 1

$$\omega_1 = s_1^2 \sqrt{\frac{EJ}{m}}$$
.
Для заданной балки $\omega_1 = (0,5922673)^2 \sqrt{\frac{EJ}{m}}$.

Отношение частоты вынужденных колебаний Θ к основной частоте собственных колебаний равно

$$\frac{\theta}{\omega_1} = \frac{0.5}{0.5922673} = 0.84.$$

8.5.3. Расчет неразрезных балок, загруженных на одном пролете

Как было отмечено ранее, уравнения трех (и пяти) моментов в динамике сооружений (8.84) имеют внешнюю форму такую же, как и в статике сооружений (п. 7.1). Поэтому является очевидным, что и для колеблющейся балки отношение амплитуд опорных моментов для двух смежных опор незагруженного пролета не зависит от амплитуд сил и их расположения на загруженных пролетах.

Обозначим отношение правого опорного момента к левому через

$$K_n = \frac{M_n}{M_{n+1}},$$

назовем это отношение левым моментным отношением, а отношение левого опорного момента к правому

$$K'_n = \frac{M_{n-1}}{M_n}$$

правым моментным отношением.

Используя уравнение (8.84), получим формулы для определения этих отношений через амплитудные перемещения:

$$\boldsymbol{K}_{n+1} = -\frac{1}{\delta_{n,n-1}} \left(\delta_{nn} + \frac{\delta_{n,n-1}}{\boldsymbol{K}_n} \right); \qquad (8.90)$$

$$\mathcal{K}'_{n} = -\frac{1}{\delta_{n,n-1}} \left(\delta_{nn} + \frac{\delta_{n,n+1}}{\mathcal{K}'_{n+1}} \right), \qquad (8.91)$$

где $\delta_{n,n-1}$, δ_{nn} , $\delta_{n,n+1}$ определяются соответственно по (8.85), (8.86), (8.87).

Величины K_1 на первом пролете и K'_n на последнем пролете зависят от условий закрепления балки на левом и правом концах. Если балка слева шарнирно оперта, то

$$K_1 = \infty, \quad K_2 = -\frac{\delta_{11}}{\delta_{12}}, \quad K_3 = -\frac{1}{\delta_{23}} \left(\delta_{22} + \frac{\delta_{21}}{K_2} \right)$$
 и т. д. (8.92)

При защемленном левом конце балки

$$K_1 = -\frac{\delta_{00}}{\delta_{01}} = -\frac{B_{sl_1}C_{sl_1} - A_{sl_1}D_{sl_1}}{D_{sl_1}} .$$
(8.93)

Аналогично для последнего пролета (например, балка имеет четыре пролета, т. е. m = 4):

– при шарнирном опирании правого конца балки

$$K'_4 = \infty, \quad K'_3 = -\frac{\delta_{33}}{\delta_{32}}, \quad K'_2 = -\frac{1}{\delta_{21}} \left(\delta_{22} + \frac{\delta_{23}}{K'_3} \right)$$
ит.д.; (8.94)

- при защемлении правого конца

$$K'_{4} = -\frac{\delta_{44}}{\delta_{43}} = -\frac{B_{sl_{4}}C_{sl_{4}} - A_{sl_{4}}D_{sl_{4}}}{D_{sl_{4}}} .$$
(8.95)

Рассматривая теперь загруженный пролет совместно с пролетами, расположенными от него слева и справа, и составляя для n-1 и n опор уравнения трех моментов (8.84), найдем

$$M_{n-1} = \frac{\Delta_{n-1,F} K'_n + \Delta_{nF}}{\delta_{n-1,n} (K_n K'_n - 1)} ; \qquad (8.96)$$

$$M_n = \frac{\Delta_{nF} K_n + \Delta_{n-1,F}}{\delta_{n-1,n} (K_n K'_n - 1)} , \qquad (8.97)$$

где $\Delta_{n-1,F}$, Δ_{nF} – амплитудные значения углов поворота пролета I_n на опорах n-1 и n от вибрационной нагрузки. Эти перемещения определяются как углы поворота в начале координат однопролетной балки от заданной нагрузки по прил. 2. Например, для загруженного сосредоточенной силой пролета (рис. 8.16) по схеме 4 прил. 2 найдем сначала $\Delta_{n-1,F}$, а затем, развернув пролет на 180° в горизонтальной плоскости, – Δ_{nF} :

$$\Delta_{n-1,F} = \frac{F}{s^2 E J} \frac{B_{sb} D_{sl_n} - D_{sb} B_{sl_n}}{B_{sl_n}^2 - D_{sl_n}^2} ; \qquad (8.98)$$

$$\Delta_{nF} = \frac{F}{s^2 EJ} \frac{B_{sa} D_{sl_n} - D_{sa} B_{sl_n}}{B_{sl_n}^2 - D_{sl_n}^2}.$$
 (8.99)

После определения опорных моментов на загруженном пролете (8.96), (8.97) моменты на остальных опорах находятся с помощью коэффициентов по зависимостям:

- слева от загруженного пролета

$$M_{n-2} = \frac{M_{n-1}}{K_{n-1}}, \quad M_{n-3} = \frac{M_{n-2}}{K_{n-2}}, \dots;$$
 (8.100)

- справа от загруженного пролета

$$M_{n+1} = \frac{M_n}{K'_{n+1}}, \quad M_{n+2} = \frac{M_{n+1}}{K'_{n+2}}, \dots$$
 (8.101)

Далее, как было отмечено выше (см. п. 8.5.2), каждый пролет неразрезной балки рассматривается отдельно. При этом на загруженный пролет действуют внешняя вибрационная нагрузка и найденные опорные моменты, а незагруженные между опорами пролеты находятся только под действием опорных моментов. Эпюры изгибающих моментов и поперечных сил строятся при помощи уравнений (8.30) и (8.31).

8.5.3.1. Пример расчета неразрезной балки, загруженной на одном пролете

Расчетная схема балки представлена на рис. 8.17, а, основная система – на рис. 8.17, б. Жесткость балки постоянна, EJ = const. Характеристическое число $s = 0.5 \text{ м}^{-1}$.

Рис. 8.17. Расчетная схема заданной балки (а) и ее основная система (б)

По выражениям (8.85), (8.86), (8.87) определим амплитудные значения углов поворота сечений балки на опорах в основной системе. Предварительно найдем функции влияния (по прил. 1) для каждого пролета в зависимости от sl_n .

Для первого и четвертого пролетов $sl_1 = sl_4 = 0, 5 \cdot 4 = 2, 0$;

$$A_{sl_1} = 1,6730; B_{sl_1} = 2,2681; C_{sl_1} = 2,0892; D_{sl_1} = 1,3588.$$

Для второго и третьего пролетов $sl_2 = sl_3 = 0.5 \cdot 6 = 3.0$;

$$A_{sl_2} = 4,5388; \ B_{sl_2} = 5,0795; \ C_{sl_2} = 5,5288; \ D_{sl_2} = 4,9384$$

Теперь найдем

$$\begin{split} \delta_{00} &= \frac{1}{sEJ} \frac{B_{sl_1}C_{sl_1} - A_{sl_1}D_{sl_1}}{B_{sl_1}^2 - D_{sl_1}^2} = \frac{0,747}{sEJ} ; \\ \delta_{10} &= \delta_{01} = \frac{1}{sEJ} \frac{D_{sl_1}}{B_{sl_1}^2 - D_{sl_1}^2} = \frac{0,412}{sEJ} ; \\ \delta_{11} &= \frac{1}{sEJ} \frac{B_{sl_2}C_{sl_2} - A_{sl_2}D_{sl_2}}{B_{sl_2}^2 - D_{sl_2}^2} + \frac{1}{sEJ} \frac{B_{sl_1}C_{sl_1} - A_{sl_1}D_{sl_1}}{B_{sl_1}^2 - D_{sl_1}^2} = \frac{4,761}{sEJ} ; \\ \delta_{12} &= \delta_{21} = \frac{1}{sEJ} \frac{D_{sl_2}}{B_{sl_2}^2 - D_{sl_2}^2} = \frac{3,497}{sEJ} ; \\ \delta_{22} &= \frac{1}{sEJ} \frac{B_{sl_3}C_{sl_3} - A_{sl_3}D_{sl_3}}{B_{sl_3}^2 - D_{sl_3}^2} + \frac{1}{sEJ} \frac{B_{sl_2}C_{sl_2} - A_{sl_2}D_{sl_2}}{B_{sl_2}^2 - D_{sl_2}^2} = \frac{8,028}{sEJ} ; \\ \delta_{23} &= \delta_{32} = \frac{1}{sEJ} \frac{D_{sl_3}}{B_{sl_3}^2 - D_{sl_3}^2} = \frac{3,497}{sEJ} ; \end{split}$$

$$\delta_{33} = \frac{1}{sEJ} \frac{B_{sl_4}C_{sl_4} - A_{sl_4}D_{sl_4}}{B_{sl_4}^2 - D_{sl_4}^2} + \frac{1}{sEJ} \frac{B_{sl_3}C_{sl_3} - A_{sl_3}D_{sl_3}}{B_{sl_3}^2 - D_{sl_3}^2} = \frac{4,761}{sEJ} ;$$

$$\delta_{34} = \frac{1}{sEJ} \frac{D_{sl_4}}{B_{sl_4}^2 - D_{sl_4}^2} = \frac{0,412}{sEJ} .$$

Найдем моментные отношения. Левый конец балки защемлен, следовательно, левое моментное отношение первого пролета по (8.93)

$$K_1 = -\frac{0,747}{0,412} = -1,813$$

Остальные моментные отношения определим по (8.90):

$$K_{2} = -\frac{1}{\delta_{12}} \left(\delta_{11} + \frac{\delta_{10}}{K_{1}} \right) = -1,296;$$

$$K_{3} = -\frac{1}{\delta_{23}} \left(\delta_{22} + \frac{\delta_{21}}{K_{2}} \right) = -1,524;$$

$$K_4 = -\frac{1}{\delta_{34}} \left(\delta_{33} + \frac{\delta_{23}}{K_3} \right) = -5,987$$

Правый конец балки шарнирно оперт, следовательно, правое моментное отношение последнего пролета

$$K'_4 = \infty$$
.

Остальные правые фокусные отношения определяем по (8.91):

$$\begin{aligned} & \mathcal{K}'_{3} = -\frac{\delta_{33}}{\delta_{32}} = -1,361; \\ & \mathcal{K}'_{2} = -\frac{1}{\delta_{21}} \left(\delta_{22} + \frac{\delta_{23}}{\mathcal{K}'_{3}} \right) = -1,561; \\ & \mathcal{K}'_{1} = -\frac{1}{\delta_{10}} \left(\delta_{11} + \frac{\delta_{12}}{\mathcal{K}'_{2}} \right) = -6,119. \end{aligned}$$

Определим опорные моменты загруженного пролета. Предварительно вычислим углы поворота загруженного пролета на опорах 2 и 3 по прил. 2, схема 3:

$$\Delta_{2F} = \Delta_{3F} = \frac{q}{s^3 EJ} \frac{C_{sl_3} D_{sl_3} - (A_{sl_3} - 1) B_{sl_3}}{B_{sl_3}^2 - D_{sl_3}^2} = \frac{6,605 q}{s^3 EJ}.$$

По зависимостям (8.96), (8.97) вычислим

$$M_{2} = \frac{\Delta_{2F}K'_{3} + \Delta_{3F}}{\delta_{23}(K_{3}K'_{3} - 1)} = -2,539q;$$
$$M_{3} = \frac{\Delta_{3F}K_{3} + \Delta_{2F}}{\delta_{23}(K_{3}K'_{3} - 1)} = -3,686q.$$

Моменты на остальных опорах найдем по (8.100), (8.101):

$$M_1 = \frac{M_2}{K_2} = 1,959 \, q, \quad M_0 = \frac{M_1}{K_1} = -1,081 \, q, \quad M_4 = \frac{M_3}{K_3'} = 0.$$

Для построения эпюры моментов от вибрационной нагрузки рассмотрим каждый пролет отдельно (рис. 8.18).

Теперь для каждого пролета находим начальные параметры y'_0 и Q_0 (прил. 2), составляем уравнения (8.28) – (8.31), определяем необходимые функции влияния и производим вычисления (см. п. 8.5.2.1).

Так, например, эпюра изгибающих моментов показана на рис. 8.19.

Рис. 8.18. Расчетные схемы пролетов

Рис. 8.19. Эпюра изгибающих моментов

Приведенный в п. 8.5.3 метод расчета неразрезных балок особенно удобен для построения линий влияния. Для этого единичный груз следует поочередно поставить в каждый пролет неразрезной балки, определить опорные моменты по формулам (8.96), (8.97) и через моментные отношения – остальные опорные моменты. Для построения линий влияния M_x , Q_x и R_n следует привлечь формулы (см. п. 7.1)

$$M_{x} = M_{x}^{0} + M_{n} \frac{x}{l_{n}} + M_{n-1} \frac{l_{n} - x}{l_{n}} ;$$
$$Q_{x} = Q_{x}^{0} + \frac{M_{n} - M_{n-1}}{l_{n}} ;$$
$$R_{n} = R_{n}^{0} + \frac{M_{n-1} - M_{n}}{l_{n}} + \frac{M_{n+1} - M_{n}}{l_{n+1}} ,$$

где M_x^0 , Q_x^0 и R_n^0 – изгибающий момент, поперечная сила и опорная реакция на n-й опоре в основной системе неразрезной балки.

В табл. 8.1 приведены ординаты линий влияния, а на рис. 8.20 – линии влияния.

Таблица 8.1

№ пролета	Абсцисса груза, м	M ₀	M ₁	M ₂	M ₃	Сере второго <i>М_х</i>	дина пролета Q _x	R ₂
	x =1	-0,657	-0,045	0,029	-0,021	-0,059	0,014	-0,032

Ординаты линий влияния опорных моментов

T	x =2	-0,740	-0,117	0,075	-0,055	-0,154	0,035	-0,084
1	x =3	-0,444	-0,130	0,083	-0,061	-0,170	0,039	-0,092
	x=1	0,359	-0,652	-0,195	0,143	0,416	-0,097	0,225
	x =2	0,526	-0,019	-0,417	0,307	0,965	-0,238	0,504
II	x =3	0 593	_1 075	0.567	0.417	1 524	-0,406	0.753
		0,373	-1,075	0,507	0,717	1,527	0,594	0,755
	x=4	0,469	-0,850	-0,569	0,418	1,029	0,400	0,915
	x =5	0,244	-0,443	-0,382	0,281	0,494	0,192	0,982
	x=1	-0.182	0.329	-0 427	-0 389	-0 355	-0 139	1 032
	<u> </u>	0,102	0,525	0,427	0,505	0,555	0,155	1,032
	x= 2	-0,275	0,499	-0,647	-0,752	-0,583	-0,211	1,003
III	x =3	-0,280	0,508	-0,659	-0,956	-0,548	-0,215	0,856
	x=4	-0,212	0,385	-0,499	-0,911	-0,415	-0,163	0,595
	x =5	-0,104	0,188	-0,243	-0,585	-0,203	-0,079	0,278
	x=1	0.058	-0.105	0.135	-0.207	0.113	0.044	-0.152
13.7		0,050	-0,105	0,155	-0,207	0,115	0,044	-0,152
IV	x= 2	0,068	-0,123	0,160	-0,244	0,132	0,052	-0,179
	x =3	0,044	-0,079	0,102	-0,156	0,085	0,033	-0,115

Рис. 8.20. Линии влияния опорных моментов и M_x , Q_x , R_2

Приведенные на рис. 8.20 линии влияния построены в предположении, что масса груза мала по сравнению с массой балки.

8.5.4. Расчет неразрезных балок методом перемещений

Рассмотрим неразрезную балку, находящуюся под действием вибрационной нагрузки (рис. 8.21, а).

Рис. 8.21. Расчетная схема (а) и основная система (б) неразрезной балки

Основную систему получим путем введения связей, препятствующих угловым перемещениям промежуточных опор балки (рис. 8.21, б). Общее каноническое уравнение вибрационных реактивных моментов для *n*-й связи имеет вид:

$$Z_{n-1} r_{n,n-1} + Z_n r_{nn} + Z_{n+1} r_{n,n+1} + R_{nF} = 0.$$
 (8.102)

Основная система метода перемещений, как и метода сил, состоит из стандартных элементов, для которых в прил. 2 приведены решения. На основании этих решений найдем коэффициенты и свободный член уравнения (8.102).

В этом уравнении $r_{n,n-1}$ – реактивный момент в связи n от единичного вибрационного смещения связи n-1 (рис. 8.22, а).

Рис. 8.22. К определению коэффициентов канонического уравнения

Развернем пролет I_n на 180° в горизонтальной плоскости и воспользуемся прил. 2 (схема 15):

$$r_{n,n-1} = sEJ \frac{D_{sl_n}}{B_{sl_n} D_{sl_n} - C_{sl_n}^2}$$
 (8.103)

Амплитудное значение реактивного момента в связи n от поворота этой же связи на угол $Z_n = 1$ (рис. 8.22, б) равно (см. прил. 2, схема 14)

$$r_{nn} = sEJ \frac{A_{sl_{n+1}}D_{sl_{n+1}} - B_{sl_{n+1}}C_{sl_{n+1}}}{B_{sl_{n+1}}D_{sl_{n+1}} - C_{sl_{n+1}}^2} + sEJ \frac{A_{sl_n}D_{sl_n} - B_{sl_n}C_{sl_n}}{B_{sl_n}D_{sl_n} - C_{sl_n}^2}.$$
 (8.104)

Теперь определим амплитудные значения реактивного момента в связи n от поворота связи n+1 на угол $Z_{n+1} = 1$ (рис. 8.22, в). По прил. 2 (схема 15) имеем

$$r_{n,n+1} = -SEJ \frac{D_{Sl_{n+1}}}{B_{Sl_{n+1}}D_{Sl_{n+1}} - C_{Sl_{n+1}}^2} .$$
(8.105)

Амплитудное значение реактивного момента в связи *n* от внешней вибрационной нагрузки определяется в каждом конкретном случае при помощи прил. 2.

После решения системы уравнений (8.102) и определения реактивных усилий во введенных связях определяются параметры напряженнодеформированного состояния балки и частоты свободных колебаний (см. п. 8.2.4).

8.5.4.1. Пример расчета неразрезной балки

Расчетную схему заданной балки примем такой же, как и в п. 8.5.2.1 (см. рис. 8.13).

Основная система этой балки показана на рис. 8.23, а.

Рис. 8.23. Основная система неразрезной балки (а) и расчетная схема первого пролета (б)

Каноническое уравнение метода перемещений имеет следующий вид:

$$Z_1 r_{11} + R_{1F} = 0.$$

Определим коэффициент и свободный член этого уравнения. Из прил. 2 (схема 18 и схема 14) получим

$$\boldsymbol{r}_{11} = \boldsymbol{sEJ} \; \frac{D_{sl_2}^2 - B_{sl_2}^2}{A_{sl_2} D_{sl_2} - B_{sl_2} C_{sl_2}} + \boldsymbol{sEJ} \; \frac{A_{sl_1} D_{sl_1} - B_{sl_1} C_{sl_1}}{B_{sl_1} D_{sl_1} - C_{sl_1}^2} = 2,170 \, \boldsymbol{sEJ} \; \cdot$$

Из того же прил. 2, но используя схему 24, имеем

$$R_{1F} = \frac{F}{s} \frac{D_{sl_1}C_{sa} - D_{sa}C_{sl_1}}{B_{sl_1}D_{sl_1} - C_{sl_1}^2} = 51,782.$$

Решаем каноническое уравнение и находим

$$Z_1 = -\frac{R_{1F}}{r_{11}} = -\frac{47,722}{EJ}.$$

Теперь рассматриваем отдельно первый пролет неразрезной балки в основной системе. Расчетная схема этого пролета показана на рис. 8.23, б.

Найдем начальные параметры Q_0 , кН, и M_0 , кН·м, при помощи прил. 2 (схема 24 и схема 15):

$$M_{0} = \varphi SEJ \frac{D_{sl_{1}}}{B_{sl_{1}}D_{sl_{1}} - C_{sl_{1}}^{2}} + \frac{F}{s} \frac{D_{sl_{1}}C_{sb} - D_{sb}C_{sl_{1}}}{B_{sl_{1}}D_{sl_{1}} - C_{sl_{1}}^{2}} = -77,1;$$

$$Q_{0} = -\varphi S^{2}EJ \frac{C_{sl_{1}}}{B_{sl_{1}}D_{sl_{1}} - C_{sl_{1}}^{2}} + F \frac{B_{sl_{1}}D_{sb} - C_{sl_{1}}C_{sb}}{B_{sl_{1}}D_{sl_{1}} - C_{sl_{1}}^{2}} = 71,6.$$

Найденные значения изгибающего момента и поперечной силы в начале координат соответствуют Q_0 и M_0 , найденным при расчете балки методом сил (см. рис. 8.15).

Теперь убедимся в том, что и опорные моменты M_1 совпадают. Уравнение для изгибающего момента в любом сечении пролета будет следующим (см. (8.34)):

$$M_{x} = M_{0}A_{sx} + \frac{Q_{0}}{s}B_{sx} + \frac{F}{s}B_{s(x-2)} .$$

При $x = I_1$ получим $M_{I_1} = -5,95 \,\mathrm{kH} \cdot \mathrm{m}$, что соответствует ранее полученному результату (см. рис. 8.15, а).

8.5.5. Расчет статически неопределимых рам методом перемещений

Рассмотрим статически неопределимую раму, находящуюся под действием вибрационной нагрузки (рис. 8.24, а).

Рис. 8.24. Расчетная схема статически неопределимой рамы (а) и основная система (б)

Прежде чем обосновать применяемую здесь методику расчета, отметим следующее. В то время, как ригель изображенной рамы колеблется вниз, в стойках возникают как изгибающие моменты, так и сжимающие силы, которые будут увеличивать прогиб стоек и одновременно вызывать их сжатие. Для упрощения расчета будем пренебрегать изгибающим действием продольной силы и считаться в необходимых случаях с вызывающим его сжатием (см. п. 8.4). Основную систему получим путем введения связей, препятствующих угловым и линейным перемещениям узлов рамы (рис. 8.24,б). Каноническое уравнение, включающее в качестве неизвестных угловые и линейные перемещения введенных связей, имеет следующий вид:

$$Z_1 r_{k1} + Z_2 r_{k2} + \ldots + Z_n r_{kn} + R_{kF} = 0.$$
 (8.106)

По этому уравнению при k = 1, 2, ... n получим n канонических уравнений (число уравнений равно числу неизвестных).

В уравнении (8.106) r_{km} – амплитудное значение реакции в связи k от единичного вибрационного сжатия связи M (m=1,2,...n); R_{kF} – амплитудная реакция той же связи от заданной вибрационной нагрузки. Формулы для определения амплитудных значений реакций r_{km} и R_{kF} приведены в прил. 2.

После решения системы уравнений (8.106) каждый элемент рамы рассматривается как однопролетная балка, загруженная внешней нагрузкой и найденными реакциями введенных связей. Величины напряженнодеформированного состояния определяются по уравнениям (8.28) – (8.31) или по уравнениям типа (8.74).

Канонические уравнения свободных колебаний имеют следующий вид:

$$Z_1 r_{k1} + Z_2 r_{k2} + \ldots + Z_n r_{kn} = 0 . \qquad (8.107)$$

Далее составляем определитель этой системы уравнений и приравниваем его нулю:

После раскрытия определителя получаем уравнение частот свободных колебаний.

8.5.5.1. Пример расчета рамы на вибрационные воздействия

Расчетная схема заданной рамы показана на рис. 8.25, а.

Рис. 8.25. Расчетная схема рамы (а), основная система (б), схема реактивных моментов в узле (в)

Основная система заданной рамы приведена на рис. 8.25, б.

Каноническое уравнение метода перемещений имеет следующий вид:

$$Z_1 r_{11} + R_{1F} = 0.$$

Для определения амплитудного значения реактивного момента r_{11} воспользуемся прил. 2:

$$\boldsymbol{r}_{11} = \boldsymbol{s}_{2}\boldsymbol{E}\boldsymbol{J} \frac{D_{\boldsymbol{s}_{2}\boldsymbol{I}_{2}}^{2} - B_{\boldsymbol{s}_{2}\boldsymbol{I}_{2}}^{2}}{A_{\boldsymbol{s}_{2}\boldsymbol{I}_{2}}D_{\boldsymbol{s}_{2}\boldsymbol{I}_{2}} - B_{\boldsymbol{s}_{2}\boldsymbol{I}_{2}}C_{\boldsymbol{s}_{2}\boldsymbol{I}_{2}}} + \boldsymbol{s}_{1}\boldsymbol{E}\boldsymbol{J} \frac{A_{\boldsymbol{s}_{1}\boldsymbol{I}_{1}}D_{\boldsymbol{s}_{1}\boldsymbol{I}_{1}} - B_{\boldsymbol{s}_{1}\boldsymbol{I}_{1}}C_{\boldsymbol{s}_{1}\boldsymbol{I}_{1}}}{B_{\boldsymbol{s}_{1}\boldsymbol{I}_{1}}D_{\boldsymbol{s}_{1}\boldsymbol{I}_{1}} - C_{\boldsymbol{s}_{1}\boldsymbol{I}_{1}}^{2}} + \\ + \boldsymbol{s}_{3}\boldsymbol{E}\boldsymbol{J} \frac{A_{\boldsymbol{s}_{3}\boldsymbol{h}}D_{\boldsymbol{s}_{3}\boldsymbol{h}} - B_{\boldsymbol{s}_{3}\boldsymbol{h}}C_{\boldsymbol{s}_{3}\boldsymbol{h}}}{B_{\boldsymbol{s}_{3}\boldsymbol{h}}D_{\boldsymbol{s}_{3}\boldsymbol{h}} - C_{\boldsymbol{s}_{3}\boldsymbol{h}}^{2}}.$$

Первый член этого уравнения представляет собой амплитудное значение реактивного момента в защемлении элемента рамы с пролетом I_2 при повороте этого защемления на угол $Z_1 = 1$ (прил. 2, схема 18). Второй член – амплитудное значение реактивного момента во введенной заделке элемента рамы с пролетом I_1 (прил. 2, схема 14). Здесь элемент рамы повернут на 180° в горизонтальной плоскости. Третий член – амплитудное значение реактивного момента во введенкой заделке стойки рамы с высотой h (прил. 2, схема 14).

По прил. 1 найдем функции влияния:

$$\begin{split} s_{1}l_{1} &= 0.5 \cdot 4 = 2; \\ A_{s_{1}l_{1}} &= 1.67277; B_{s_{1}l_{1}} = 2.26808; C_{s_{1}l_{1}} = 2.08917; D_{s_{1}l_{1}} = 1.35878; \\ s_{2}l_{2} &= 0.6 \cdot 6 = 3.6; \\ A_{s_{2}l_{2}} &= 8.70801; B_{s_{2}l_{2}} = 8.92147; C_{s_{2}l_{2}} = 9.60477; D_{s_{2}l_{2}} = 9.36399; \\ s_{3}h &= 0.8 \cdot 6 = 4.8; \end{split}$$

 $A_{s_3h} = 30,42341; B_{s_3h} = 29,87746; C_{s_3h} = 30,33591; D_{s_3h} = 30,87362.$

При помощи рис. 8.25, в находим

$$r_{11} = 11,995 EJ$$
.

Для определения амплитудного значения реактивного момента в защемлении от внешней нагрузки воспользуемся схемой 13 прил. 2:

$$R_{1F} = \frac{q}{s_2} \frac{B_{s_2 l_2} (A_{s_2 l_2} - 1) - D_{s_2 l_2} C_{s_2 l_2}}{B_{s_2 l_2} C_{s_2 l_2} - A_{s_2 l_2} D_{s_2 l_2}} = -14,182 q.$$

Решаем каноническое уравнение и определяем

$$Z_1 = -\frac{R_{1F}}{r_{11}} = \frac{1,182}{EJ} \cdot q.$$

Далее рассмотрим элемент рамы с пролетом I_1 . Расчетная схема этого элемента показана на рис. 8.26, а.

Запишем уравнение для определения изгибающего момента в произвольном сечении первого пролета (см. (8.34)):

$$M_{x} = -sEJ y_{0}'D_{sx} + M_{0}A_{sx} + \frac{Q_{0}}{s}B_{sx}.$$

Начальные параметры найдем, воспользовавшись прил. 2 (схема 14):

Рис. 8.26. Расчетная схема элементов рамы

Из прил. 1 выписываем значения функций влияния:

 $\begin{aligned} sx &= 0,5 \cdot 1 = 0,5; & D_{sx} = 0,020835; & A_{sx} = 1,002605; & B_{sx} = 0,50265; \\ sx &= 0,5 \cdot 2 = 1,0; & D_{sx} = 0,16685; & A_{sx} = 1,04169; & B_{sx} = 1,008335; \\ sx &= 0,5 \cdot 3 = 1,5; & D_{sx} = 0,565895; & A_{sx} = 1,211575; & B_{sx} = 1,563385; \\ sx &= 0,5 \cdot 4 = 2,0; & D_{sx} = 1,35878; & A_{sx} = 1,673025; & B_{sx} = 2,26808. \end{aligned}$

Вычисляем значения изгибающих моментов в различных сечениях пролета:

$$X = 1_{M}$$
 $M_{X} = -0.746 q$; $X = 3_{M}$ $M_{X} = 0.146 q$;
 $X = 2_{M}$ $M_{X} = -0.318 q$; $X = 4_{M}$ $M_{X} = 0.626 q$.

Аналогично определяются изгибающие моменты в сечениях остальных элементов рамы (см. рис. 8.26, б, в).

По результатам вычислений построим эпюру моментов (рис. 8.27). Нетрудно убедиться в том, что узел 1 находится в равновесии.

Рис. 8.27. Эпюра амплитуд от вибрационной нагрузки (а) и эпюра изгибающих моментов от статической нагрузки (б)

ПРИЛОЖЕНИЕ 1

Численные значения функций A_{sx} , B_{sx} , C_{sx} , D_{sx}

S·X	A _{sx}	B _{sx}	C _{sx}	D _{sx}
1	2	3	4	5
0	1,0	0	0	0
0,01	1,0	0,01	0,00005	0
0,02	1,0	0,02	0,00020	0
0,03	1,0	0,03	0,00045	0
0,04	1,0	0,04	0,00080	0,00001
0,05	1,0	0,05	0,00125	0,00002
0,06	1,0	0,06	0,00180	0,00004
0,07	1,0	0,07	0,00245	0,00006
0,08	1,0	0,08	0,00320	0,00009
0,09	1,0	0,09	0,00405	0,00012
0,1	1,0	0,10	0,00500	0,00017
0,2	1,00007	0,20000	0,02000	0,00133
0,3	1,00034	0,30002	0,04500	0,00450
0,4	1,00106	0,40008	0,07999	0,01062
0,5	1,00261	0,50026	0,12502	0,02084
0,6	1,00539	0,60064	0,18006	0,03606
0,7	1,01001	0,70190	0,24516	0,05718
0,8	1,01702	0,80273	0,32036	0,08537
0,9	1,02735	0,90492	0,40574	0,12159
1,0	1,04169	1,00833	0,50139	0,16686
1,1	1,06106	1,11343	0,60746	0,22222
1,2	1,08651	1,22075	0,72415	0,28871
1,3	1,11920	1,33097	0,85170	0,36691
1,4	1,16043	1,44487	0,99046	0,45942
1,5	1,21157	1,56338	0,14083	0,56589
1/2π	1,25409	1,650015	1,25409	0,65015
1,6	1,27413	1,68757	1,30333	0,63800
1,7	1,39974	1,81864	1,47832	0,82698
1,8	1,44013	1,95801	1,66823	0,98416
1,9	1,54722	2,10723	1,87551	1,16093
2,0	1,67302	2,26808	2,08917	1,35878
2,1	1,82973	2,44253	2,32458	1,57937
2,2	1,98970	2,63280	2,57820	1,82430
2,3	2,18547	2,84133	2,85175	2,09562
2,4	2,40978	3,07085	3,14717	2,39537
2,5	2,66557	3,32433	3,46671	2,72586

	1	2	3	4	5
--	---	---	---	---	---

2,6	2,95606	3,60511	3,81295	3,08961
2,7	3,08470	3,91682	4,18872	3,48944
2,8	3,65520	4,26346	4,59747	3,92846
2,9	4,07181	4,64940	5,04277	4,41016
3,0	4,53883	5,07949	5,52882	4,93837
3,1	5,06118	5,55901	6,06032	5,51743
π	5,29597	5,77437	6,29597	5,77437
3,2	5,66418	6,09375	6,64247	6,15212
3,3	6,29364	6,69006	7,28112	6,84781
3,4	7,01592	7,35491	7,98277	7,61045
3,5	7,81818	8,09592	8,75464	8,44670
3,6	8,70801	8,92147	9,60477	9,36399
3,7	9,69345	9,84072	10,54205	10,37056
3,8	10,78540	10,86377	11,57637	11,47563
3,9	11,99271	12,00167	12,71864	12,68943
4,0	13,32739	13,26656	13,98093	14,02336
4,1	14,80180	14,67179	15,37662	15,49007
4,2	16,43020	16,23204	16,92046	17,10362
4,3	18,27794	11,96347	18,62874	18,87964
4,4	20,21212	19,88365	20,51945	20,83545
4,5	22,40166	22,01274	22,61246	22,99027
4,6	24,81751	24,37172	24,92966	25,36541
4,7	27,48287	26,98456	27,49526	27,98448
3/2π	27,83169	27,32720	27,83169	28,32720
4,8	30,42341	29,87746	30,33591	30,87362
4,9	33,66756	33,07936	33,48105	34,06181
5,0	37,24680	36,62214	36,96314	37,58106
5,1	41,19599	40,54105	40,81801	41,46686
5,2	45,55370	44,87495	45,08518	45,75840
5,3	50,36263	49,66682	49,80826	50,49909
5,4	55,67008	54,96409	55,03539	55,73685
5,5	61,52834	60,81919	60,81967	61,52473
5,6	67,9953	67,29004	66,21974	67,92131
5,7	75,13504	74,44067	74,30033	73,99136
5,8	83,01840	82,34183	82,13288	82,80663
5,9	91,72379	91,07172	90,79631	91,44562
6,0	101,33790	100,71687	100,37773	100,99629
6,1	111,95664	111,37280	110,97337	111,55491
6,2	123,68604	123,19521	122,68950	123,22830
2π	134,37338	133,87245	133,37338	133,87245
1	2	3	4	5
6,3	136,64336	136,15092	135,64350	136,13411

6,4	150,96826	150,46912	149,97508	150,35257
6,5	166,77508	166,39259	165,79749	166,17747
6,6	184,24925	183,92922	183,29902	183,61768
6,7	203,55895	208,30357	202,64457	202,89872
6,8	224,89590	224,70860	224,02740	224,21449
6,9	248,47679	248,35764	247,66106	247,77920
7,0	274,53547	274,48655	273,78157	273,82956
7,1	303,33425	303,28381	302,64970	302,62707
7,2	335,16205	335,25434	334,55370	334,46067
7,3	370,33819	370,50003	369,81211	369,64954
7,4	409,21553	409,44531	408,77698	408,54660
7,5	452,18406	452,92446	451,73742	451,54146
7,6	499,67473	500,03281	499,42347	499,06489
7,7	552,16384	552,58097	552,01042	551,58780
7,8	610,17757	610,64966	610,12361	609,65112
5/2π	643,99272	644,49252	643,99272	643,49252
7,9	674,29767	674,81986	674,34367	673,82102
8,0	745,16683	745,73409	745,31233	744,74473
8,1	823,49532	823,95189	823,73886	823,28200
8,2	910,06807	910,70787	910,40722	909,76714
8,3	1005,75247	1006,41912	1006,18385	1005,51695
8,4	1111,50710	1112,19393	1112,02639	1111,33933
8,5	1228,39125	1229,09140	1228,99326	1228,29291
8,6	1357,57558	1358,28205	1358,25430	1357,54765
8,7	1500,35377	1501,05950	1501,10242	1500,39658
8,8	1658,15549	1658,85342	1658,96658	1658,26850
8,9	1832,56070	1833,42607	1833,42614	1832,74284
9,0	2025,31545	2025,97701	2026,22658	2025,56489
9,1	2238,34934	2238,98270	2239,29706	2238,66360
9,2	2437,79487	2474,39373	2474,76971	2474,17079
9,3	2734,00871	2734,56701	2735,00094	2734,44255
9,4	3021,59536	3022,10755	3022,59505	3022,08297
3π	3097,41192	3097,91193	3098,41197	3097,91193
9,5	3339,43414	3339,89411	3340,43031	3359,96926
9,6	3690,70306	3691,11321	3691,68775	3691,27754
9,7	4078,92063	4079,26590	4079,88299	4079,53766
9,8	4508,47103	4508,25298	4508,90146	4508,61946
9,9	4982,14802	4982,35202	4983,03721	4982,32136
10,0	5506,19696	5506,34442	5507,03599	5506,88844

приложение 2

N⁰	Схема нагружения	Значения параметров
1	2	3
1	$M \sin \theta t$	$Q_{0} = -Ms \frac{A_{sl}B_{sl} - C_{sl}D_{sl}}{B_{sl}^{2} - D_{sl}^{2}}$ $y_{0}' = \frac{M}{sEJ} \frac{B_{sl}C_{sl} - A_{sl}D_{sl}}{B_{sl}^{2} - D_{sl}^{2}}$
2	M sin θ t	$Q_0 = Ms \frac{B_{sl}}{B_{sl}^2 - D_{sl}^2}$ $y'_0 = \frac{M}{sEJ} \frac{D_{sl}}{B_{sl}^2 - D_{sl}^2}$
3	$\begin{array}{c} q\sin\theta t \\ \hline \\$	$Q_{0} = \frac{q}{s} \frac{B_{sl}C_{sl} - (A_{sl} - 1)D_{sl}}{B_{sl}^{2} - D_{sl}^{2}}$ $y_{0}' = \frac{q}{s^{3}EJ} \frac{C_{sl}D_{sl} - (A_{sl} - 1)B_{sl}}{B_{sl}^{2} - D_{sl}^{2}}$
4	$ \begin{array}{c c} F \sin \theta t \\ \hline mmmma \\ F \\ \hline y \end{array} $	$Q_{0} = F \frac{B_{sb}B_{sl} - D_{sb}D_{sl}}{B_{sl}^{2} - D_{sl}^{2}}$ $y_{0}' = \frac{F}{s^{2}EJ} \frac{B_{sb}D_{sl} - D_{sb}B_{sl}}{B_{sl}^{2} - D_{sl}^{2}}$
5	$M \sin \theta t$	$Q_0 = Ms \frac{C_{sb}D_{sl} - A_{sb}B_{sl}}{B_{sl}^2 - D_{sl}^2}$ $y'_0 = \frac{C_{sb}B_{sl} - A_{sb}D_{sl}}{B_{sl}^2 - D_{sl}^2}$
6	$M\sin\theta t$	$Q_0 = Ms \frac{B_{sl}^2 - A_{sl}C_{sl}}{A_{sl}D_{sl} - B_{sl}C_{sl}}$ $y'_0 = \frac{M}{sEJ} \frac{B_{sl}D_{sl} - C_{sl}^2}{A_{sl}D_{sl} - B_{sl}C_{sl}}$

Значения начальных параметров для однопролетных балок

	1	2	3
--	---	---	---

Развитие строительной механики идет, с одной стороны, по пути разработки все более совершенных вычислительных методов, ориентированных на применение ЭВМ, с другой – по пути уточнения расчетных схем и исходных гипотез, положенных в основу расчета.

Использование численных методов и ЭВМ привело к бурному развитию строительной механики. Количественные возможности ЭВМ перешли в качественные: из строительной механики стержневых систем развилась фундаментальная строительная механика с единым подходом к стержневым, тонкостенным пространственным конструкциям и массивным телам. Это обстоятельство нашло отражение в разд. 6 «Методы расчета статически неопределимых систем».

Что касается развития строительной механики, связанного с уточнением расчетных схем и исходных гипотез, то здесь прежде всего обратим внимание на следующие актуальные проблемы, которые ждут своего решения.

В классических разделах строительной механики рассматриваются почти исключительно задачи, описываемые линейными уравнениями. В частности, для связи между внутренними силами и деформациями используется линейный закон Гука. Однако большинство строительных материалов подчиняются закону Гука лишь в начальных стадиях своей работы, т. е. при малых напряжениях и деформациях. Для изучения условий, при которых возможно разрушение материала и всей конструкции, нужен переход от закона Гука к более общим нелинейным зависимостям усилий от деформаций, определяемым из эксперимента.

Большое значение для работы конструкций имеет ползучесть материала. Теория ползучести, в отличие от теории пластичности, исходит не из функциональной связи между деформациями и напряжениями, а из связи, выражаемой дифференциальными или интегральными соотношениями во времени. Хотя основной вид уравнения ползучести был дан еще в 1874 г., приложение теории ползучести к расчету конструкций началось лишь в середине XIX в. Необходимость учета ползучести в расчетах строительных, особенно железобетонных конструкций, признана всеми. Достаточно отметить, что напряжение в арматуре железобетонных конструкций может в процессе ползучести увеличиться в 2-2,5 раза, а перемещение – в 3-4 раза.

Новым словом в строительной механике является теория надежности строительных конструкций, учитывающая случайные отклонения расчетных величин от их средних значений. При этом детерминированные величины и зависимости заменяются случайными, причем широко используются методы теории вероятностей.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Баженов В.А., Перельмутер А.В., Шишов О.В. Будівельна механіка. Комп'ютерні технології: Підручник / За заг. ред. В.А. Баженова. – К.: Каравела, 2009. – 696 с.
- Смирнов А.Ф., Александров А.В., Лащенников Б.Я., Шапошников Н.Н. Строительная механика. Стержневые системы. – М.: Стройиздат, 1981. – 512 с.
- Александров А.В., Лащенников Б.Я., Шапошников Н.Н. Строительная механика. Тонкостенные пространственные системы. – М.: Стройиздат, 1983. – 488 с.
- 4. Дарков А.В., Шапошников Н.Н. Строительная механика. М.: Высшая школа, 1986. 607 с.
- 5. Ржаницын А.Р. Строительная механика. М.: Высшая школа, 1991. 439 с.
- Рабинович И.М. Основы строительной механики стержневых систем. М.: Гос. изд-во литературы по строительству, архитектуре и строительным материалам, 1960. – 516 с.
- 7. Снитко Н.К. Строительная механика. М.: Высшая школа, 1980. 413 с.
- Клейн Г.К. Руководство к практическим занятиям по курсу строительной механики (статика стержневых систем): Учеб. пособие для студентов вузов / Г.К. Клейн, Н.Н. Леонтьев, М.Г. Ванюшенков и др.; под ред. Г.К. Клейна. – 4-е изд., перераб. и доп. – М.: Высшая школа, 1980. – 384 с.
- 9. Синицын С.Б. Строительная механика в методе конечных элементов стержневых систем. М.: Изд. АСВ, 2002. 320 с.
- 10. Галлагер Р. Метод конечных элементов. Основы / Пер. с англ. М.: Мир, 1984. 428 с.
- Смирнов А.Ф., Александров А.В., Лащенников Б.Я., Шапошников Н.Н. Строительная механика. Динамика и устойчивость сооружений. – М.: Стройиздат, 1984. – 414 с.