
1

Ministry of Education and Science of Ukraine

UKRAINIAN STATE UNIVERSITY

OF RAILWAY TRANSPORT

COMPUTER SCIENCE

FUNDAMENTALS OF ALGORITHMIZATION

OF BASIC COMPUTATIONAL PROCESSES

TUTORIAL STUDENT’S BOOK

Kharkiv 2020

2

UDC 004.421.2

С 10

Recommended for publication

by Ukrainian State University of Railway Transport

as a tutorial student’s book

(October 29, 2019, protocol No. 7)

Reviewers:

Doctor of Technical Sciences, Professor V Samsonkin (SUIT, Kiev)

Doctor of Technical Sciences, Professor А. Yerokhin (NURE, Kharkiv)

Doctor rerum naturalium О. Panchenko (Onapsis Inc., Berlin, Germany)

Doctor of Technical Sciences, Professor М. Miroshnik (UkrSURT, Kharkiv)

Authors:

S. Bantyukov, V. Merkulov, І. Biziuk, S. Bantyukova

С 10

Computer science. Fundamentals of algorithmization of basic

computational processes: Tutorial student’s book / S. Bantyukov,

V. Merkulov, І. Biziuk, S. Bantyukova. — Kharkiv: UkrSURT, 2020. –

137 p., ill. 71, tables 3.

ISBN

The tutorial student’s book contains lecture materials, control assignments,

thematic questions and is intended for students to study all specialties and forms

of discipline teaching that use computer technology to organize calculations in

professional activity.

UDC 004.421.2

ISBN © S. Bantyukov, V. Merkulov,

 І. Biziuk, S. Bantyukova

© Ukrainian State University

 of Railway Transport, 2020.

http://kart.edu.ua/en/cecs/staff-cecs-2?id=3076
http://kart.edu.ua/en/cecs/staff-cecs-2?id=3075
http://kart.edu.ua/en/cecs/staff-cecs-2?id=3076
http://kart.edu.ua/en/cecs/staff-cecs-2?id=3075
http://kart.edu.ua/en/cecs/staff-cecs-2?id=3076
http://kart.edu.ua/en/cecs/staff-cecs-2?id=3075

3

CONTENT

PREFACE 4

INTRODUCTION 5

UNIT 1. THEORETICAL BASIS OF ALGORITHMS

BUILDING 7

1.1. Stages of solving problems on the computer 7

1.2. General information about algorithms 17

1.2.1. The concept of the algorithm 17

1.2.2. Objects of action in algorithms and programs 20

1.2.3. Methods for describing algorithms 20

1.2.4. Rules of algorithm construction 24

1.2.5. Properties of algorithms 25

1.2.6. Types of algorithms 26

1.3. Methodologies and classification of algorithms design

methods 27

1.4. The problem of choice and analysis of complexity of

algorithms 35

1.5. Typical structures of algorithms 41

UNIT 2. LINEAR COMPUTING PROCESSES 49

UNIT 3. OVERALL COMPUTING PROCESSES 53

UNIT 4. CYCLICAL COMPUTING PROCESSES 73

4.1. Simple arithmetic cyclic computing processes 73

4.2. Nested cyclic computing processes 78

4.3. Iterative cyclic computing processes 82

UNIT 5. DESIGNING ARCHITECTURES OF

ARCHITECTURE PROCESSING 108

5.1. Concepts and main characteristics of the array 108

5.2. Algorithms for processing one-dimensional arrays 109

5.3. Algorithms for processing two-dimensional arrays 115

5.4. Algorithms for sorting arrays for a given feature 120

BIBLIOGRAPHICAL LIST 137

4

PREFACE

The introduction of new information technologies in all spheres

of modern life has led to the fact that the ability to work on a computer

is a necessary attribute of professional activity of any specialist and in

many respects determines his rating in society.

Computer disciplines under different names are taught in higher

education. Depending on the students' future profession, these training

courses vary in content, direction and timing.

Regardless of the specifics, they all have one fundamental

feature - the need to constantly adjust the content of the courses,

because every few years updated and improved computer hardware and

software is introduced to the market. In this regard, the textbooks

require significant reworking, and teachers feel the need for carefully

crafted teaching materials.

It is a common mistake to think that students need to learn how to use

only engineering mathematical software (MathCad, MatLab, FreeLab,

SciLab, etc.) to solve their educational tasks, so it is not advisable to teach

them programming, since only IT professionals can create high-quality

programs.

In fact, knowing the "inner world" of computing, unlike the just

simple use of certain applications, allows you to use computers as a

highly effective tool. Modern programming systems featuring

advanced, high-level algorithmic languages, user-friendly interfaces

and powerful built-in editors and debuggers allow you to create

sophisticated software products for all professionals in the industry.

In this case, the quality of software projects depends on the

commitment and desire of the authors and, first of all, on how well their

algorithms are thought out, elaborated and effective.

Possessing the skills of designing high-quality algorithms, the

ability to minimize the number of logical errors when compiling them,

the ability to quickly find and eliminate the remaining ones is an

indispensable feature of a railway engineer armed with modern

computer technology and advanced technology.

This tutorial student’s book focuses on approaches to

constructing efficient algorithms and avoids excessive

mathematization of the proposed material.

5

INTRODUCTION

One of the basic concepts of computer science is the concept of

algorithm, as a rule of information transformation. The purpose of this

tutorial student’s book is to teach you the basics of algorithmization.

This section is the foundation of any computer discipline, but the

curriculum has a short term of study. Therefore, some important issues

are not addressed, or are not addressed sufficiently deep (for example:

variability in the organization of calculations, the construction of

optimal algorithmic structures, solving problems for compiling

algorithms, etc.).

There are a large number of printed materials in various technical

fields that provide algorithms for various applications and related

programs. The disadvantage of many of them is the lack of systematic

use as a component of basic elementary algorithmic constructions,

which leads to some problems in developing optimal software projects.

The subjects taught by the Department of Computer Engineering and

Control Systems are part of all educational programs of Ukrainian State

University of Railway Transport (UkrSURT). They have the purpose of

preparing students to independent development of software projects

solving such problems as special engineering calculations, synthesis,

analysis and optimization of systems, modeling of processes and

phenomena, processing of measurement results, etc.

This manual is part of the educational and methodical complex of

publications, which cover all the disciplines of the department.

The materials collected here have been repeatedly used in the

classrooms.

Particularly, the publication includes the concise but complete

presentation of the materials and a large number of examples.

The ability to use the materials of the manual in electronic form

facilitates both classroom and independent work of students, as well as

the activities of teachers in the organization of distance learning, the

development of test questions for automated module control.

The purpose of the publication is dictated primarily by the lack of

adapted courses in computer science for foreign students, so the

material is presented in English (in the presence of the Ukrainian

version). It will significantly expand the audience of potential readers

6

and to orient this contingent to work independently theoretical and

practical material.

The language of the tutorial student’s book is adapted for students

who do not have sufficient grammatical constructions. This is one of

important differences from other tutorial student’s book.

The theory and test tasks are designed to give students the ability

to work with specialized computer literature.

The tutorial contains:

- theoretical fundamentals of algorithm development;

- test questions for topic control;

- control questions that can be used by students for self-control

and by teachers for controlling the progress;

- Illustrations that facilitate the teacher in structuring and

teaching the material;

- a list of recommended literature to deepen the acquired

knowledge and improve practical skills.

7

UNIT 1. THEORETICAL BASIS

OF ALGORITHMS BUILDING

1.1. Stages of solving problems on the computer

The use of computers involves the processing of information

using a pre-compiled program, which is especially suitable for the task

of laborious tasks that require many calculations. The advent of PCs

with advanced tooling software has made computing facilities

accessible to all interested professionals and has made it possible to

significantly speed up the results of calculations.

It is important to keep in mind the need for extensive preparatory

work and the mandatory steps in this process (Fig.1.1) [2].

Fig. 1.1. Steps to resolve the tasks on the computer

Task setting

Formalization or mathematical

formulation of a task

Choosing a numerical method for

solving the task

Algorithmization

Choosing the data structure

Designing the user interface

and developing the code

of the algorithm

Testing and debugging code

Experimental calculations

and model verification

Collection and processing of real

information

Settlements in the test process

Analysis the results obtained and

issuing recommendations f

or process improvement

Implementation results in production

and assessment of economic effect

8

I stage. Task setting.

This step involves the following:

- definition of an essence of a task and purpose that it has to be

reached as a result of its decision;

- made a general research for the problem under study;

- definition of conditions that are caused by the interaction of

various factors influencing the process.

On the basis of verbal formulation of the research problem, the

variables to be determined are selected, restrictions are written, and the

relations between the variables are recorded. At this stage, an analysis

is made of: existing analogues; hardware and software; volume and

specificity of the output.

Example: Determine triangle height by the set area if it is known

that the basis of a triangle is more than height at a certain size. (Fig.1.2).

Fig. 1.2. Illustration for example stage II

ІІ stage. Formalization or mathematical formulation of the task.

During this step:

- introduce the system of symbols;

- construct mathematical model of the task which are represented

by set of criterion function and system of the equations or inequalities;

- establish the belonging of the solved task to one of known

classes of tasks and select the corresponding mathematical apparatus.

As a result, the engineering task takes the form of a formalized

mathematical task.

Example: Determine the height of the triangle (x) by the

set area (c) if it is known that the base of the triangle is more than

the height by (b) (Fig.1.3).

9

Fig. 1.3. Illustration for stage II

Triangle area c = 0,5x(x+b) ⇒ x2+bx-2c = 0

Thus, the mathematical formulation is reduced to finding the true

positive square root of the quadratic equation.

Some tasks do not allow or require mathematical formulation (for

example: word processing).

ІІІ stage. Choosing a numerical method for solving the task.

The solution of the problem must be reduced to a sequence of

arithmetic and logical operations. The development and study of such

methods is dealt with in the mathematics section called numerical

analysis.

Example: the true roots of the quadratic equation ax2+bx+c=0 are

calculated by the formula:

,

and the value specified integral where v – constant:

,

by the formula:

y=b4/4-a4 /4+v(b-a).

These formulas are based on precise methods for solving a

problem (a series of arithmetic and logical actions).However, for most

practice tasks, exact methods are either unknown or contain

10

cumbersome formulas, so numerous methods have been developed at

different times to give a rough approximation of the required accuracy.

Example of numerical method – method of rectangles for

calculating defined integrals. It does not require the calculation of the

primitive, since the integral is replaced by the finite sum of the values

of the integrand (Fig. 1.4).

Fig. 1.4. Illustration for stage ІІІ

Besides using formulas and manually compiling programs, you

can use software tools in the form of specialized mathematical packages

or standard library programs. Further, it is recommended to attempt to

solve the problem by other methods, including proprietary algorithms

and programs, and compare results.

ІV stage. Algorithmization.

This step involves the following:

- making a scheme of the algorithm for solving the task;

- decomposition of the computing process into possible

components;

- establishing the order of following them;

- description of the contents of each such part.

All the details of this stage are carefully considered in the

following material (Fig. 1.5).

11

12

V stage. Choosing the data structure.

The data structure is a way of storing data on a computer, to which

the algorithm of their processing depends. This choice is usually made

taking into account the particularities of the algorithm implementation

in one or another programming language.

The well-designed data structure allows for various operations to

be performed using as few resources as possible (such as operation time

or the amount of RAM).

Data structures are programmed using data types, references, and

operations on them, which are performed in the selected algorithmic

language. (Fig.1.6)

The development of different types of software has shown that the

complexity of implementation and the quality of the final system

depends on the choice of the right data structure. Once the data structure

is selected, the selection and operation of the algorithm often becomes

apparent. However, sometimes things are the other way around - data

structures are chosen for the sake of optimizing key tasks with the help

of certain algorithms that work best with their type of data structures.

In any case, choosing the right data structure is very important.

VІ stage. Designing the user interface and developing the code of

the algorithm (Fig.1.7).

The completeness of using the potential capabilities of the available

software resources of the project depends on the quality of the user

interface, which is an independent characteristic of the software product,

comparable in importance to such indicators as reliability and efficiency of

use.

The main advantage of a good user interface is that the user

always feels that he controls the software, and not the software that

controls it.

To create such a feeling of “internal freedom” for the user, the

interface must have a number of properties:

- disengagement;

- coherence;

- friendliness;

- feedback;

- simplicity;

- flexibility;

- attractiveness.

13

14

Programming the task – writing a developed algorithm in the

computer source language. It is recommended to use basic designs and

data types, expanding the scope of application as you gain experience

in programming and practical problem solving.

Criteria for selection of programming languages:

- appropriate to the nature of the problem being solved;

- suitable environment - development, operational, graphic;

- safety;

- possibility hardware control;

- broadcast speed;

- object code performance;

- ability to work with selected data structures;

- service capabilities (debugging tools, working with files, built-

in help, navigation);

- integration with teamwork tools.

Fig. 1.7. An example of an interface (form with controls) and

the fragment of the program code for the task of calculating

of the defined integral by the method of left rectangles

VІІ stage. Testing and debugging code.

This stage is intended to check the correctness of the program

(Fig. 1.8) and correct any detected errors (Fig. 1.9) and provides:

Private Sub CmdLRectangle_Click()

a = Val(x0)

b = Val(xk)

h = (b - a) / n

s = 0 : x = a

Do While x < b

 s = s + f(x)

 x = x + h

Loop

d = h * s

TxtLRectangle = TxtLRectangle + Str(d)_

+ Chr(13) + Chr(10)

End Sub

Calculation of definite integrals

Entering the
number of points

Interval Entry

Number of function
calculation points

Calculation of the
integral on the interval

Rectangles

Exit

15

- syntactic debugging;

- debugging semantics and logical structure;

- test calculations and analysis of test results;

- program improvement.

Guarantee the correctness of the result may be, for example:

a) checking the fulfillment of the conditions of the task (for

example, for the algebraic equation, the found roots are substituted into

the original equation, and the differences between the left and right

parts are checked);

b) qualitative analysis of the task;

c) recalculation (if possible by other method).

Example: for algebraic equation x2+bx-2c=0 the founded roots

are substituted into the original equation and checked the differences

between the left and right parts.

For certainty let's take b=3; c=2. The equation will look like

x2+3x-4=0.
Using formula:

Obtain x1= - 4 x2= 1. We are interested in the positive root x = 1.

Make a check - substitute the obtained value in the original equation.

Conclusion: the answer is correct.

Fig. 1.8. An example of a semantic error in program code

16

Fig. 1.9. An example of a compil error

The test - is a specially selected source data in combination with

the results that the program must produce when they are processed.

Example: data for testing the problem of solving the algebraic

equation ax2+bx+c = 0 are presented in the table 1.1.

Table 1.1

Test table for solving the algebraic equation ax2+bx+c = 0

a b c Answer

0 0 0 Any x

0 0 1 No solutions

0 1 0 х=0

0 1 1 x=-1

1 0 0 x1=0; x2=0

1 1 0 x1=-1; x2=-1

1 1 1 No valid roots

2 5 2 x1=-2; x2 =0.5

VІІІ stage. Experimental calculations and model verification.

The experiment examines the change in the state of the object of

study under the influence of the information that is communicated to

him.

Testing the adequacy of the model has two goals: to verify the

validity of the accepted factors in the modeling of essential factors,

hypotheses, assumptions and to establish that the results obtained

correspond to a given accuracy allow you to perform the necessary

research.

17

ІХ step. Collection and processing of real information:

preparation of input data for the task.

Х step. Settlements in the test process.

ХІ step. Analysis the results obtained and issuing

recommendations for process improvement.

ХІІ step. Implementation results in production and assessment of

economic effect.

The contents of the IX-XII steps will be considered in detail when

studying the special disciplines of the respective educational programs.

1.2. General information about algorithms

1.2.1. The concept of the algorithm

Programming is to create instructions (programs) for your

computer that help you solve specific tasks. The program is based on

an algorithm that determines the sequence of operations performed by

the machine [3].

In everyday life, we often come across algorithms. The recipe for

cooking, the instructions for operating any appliance, or assembling

furniture are all algorithmic entries. They surround us everywhere.

Most of the actions a person does in accordance with the established

rules, without even thinking about executing the algorithm.

The solution to any problem consists of a sequence of operations

and, therefore, can be described by an algorithm. At the same time, the

execution of each stage and the general order of the stages are clearly

defined. The separate step of the algorithm should either be an

intermediate problem, the solution of which is already described, or be

simple enough to perform without further explanation.

The computer is a software, a device that solves certain problems

with its built-in algorithms. If the computer memory does not have an

algorithm for solving a specific problem, it will not be able to solve it.

The computer performs the actions described in the programs and is not

capable of independent "thinking". Just as not capable of independent

"thinking" a vacuum cleaner, tractor or bicycle.

The word "algorithm" has its roots in Latinizing the name of

Muhammad ibn Musa al-Khwarizmi in a first step to algorismus.

Al-Khwarizmi (Persian: خوارزمی) was a Persian mathematician,

https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Persian_language
https://en.wikipedia.org/wiki/Persian_people

18

astronomer, geographer, and scholar in the House of Wisdom in

Baghdad, whose name means "the native of Khwarazm", a region that

was part of Greater Iran and is now in Uzbekistan. Now Khovarizm is

a small Uzbek city of Khiva. Gradually the form and meaning of the

word "algorithmism" was distorted and changed to "algorithm".

One of the earliest German mathematical dictionaries

"Vollstandiges Mathematical Lexicon" (Leipzig, 1747) gives the

following definition of the word Algoritmus: "under this name are

combined concepts of four types of arithmetic, namely addition,

multiplication, subtraction and division".

The substantial phenomena that led to the emergence of the

concept of “algorithm” are traced in mathematics throughout its entire

existence.

This is the Euclidean algorithm for finding the largest common

multiple of natural numbers, found as far back as the 3rd century BC

and surviving to this day.

In the 15th century, the algorithm developed by the Samarkand

astronomer Al-Kashi was known, for calculating the number π, which

he calculated with 17 valid significant digits after the decimal point.

Initially, the algorithm was understood as verbal rules, schemes,

formulas that were used to describe the computing process.

This is not an exact mathematical definition, but only an

explanation of the meaning of the word “algorithm”.

With algorithms i.e. mathematicians have always dealt with

effective procedures that uniquely lead to a result: multiplication by a

“column”, division by an “angle”, a method of eliminating unknowns

when solving systems of linear equations, etc.

The development of computational mathematics and computer

technology necessitated clarification of the concepts of algorithm as an

object of mathematical theory.

A section of discrete mathematics called theory of algorithms has

appeared. The founders of the theory of algorithms are the great

mathematicians of the 20th century A.I. Kolmogorov, A.A. Markov,

A.P. Ershov, A.I. Maltsev, V.A. Uspensky, A.M. Turing, C. Godel, A.

Church, A. Thue, E.L. Post and others [1,6].

The isolation and crystallization of the concept of the algorithm

was a remarkable achievement of mathematics in the 20th century. This

made it possible to solve the problem of the possibility or solution of a

https://en.wikipedia.org/wiki/Astronomer
https://en.wikipedia.org/wiki/House_of_Wisdom
https://en.wikipedia.org/wiki/Baghdad
https://en.wikipedia.org/wiki/Khwarazm
https://en.wikipedia.org/wiki/Greater_Iran
https://en.wikipedia.org/wiki/Uzbekistan

19

number of problems in algebra, number theory, geometry and other

sections of mathematics. Emerging from the intrinsic needs of

mathematics itself, algorithm theory has received a diverse field of

activity in connection with the development of computers. It is in the

last few decades that a great number of specific algorithms have been

created and studied. First of all, these include algorithms for numerical

solving of problems of physics, mechanics, economics, etc. In addition,

there is a large group of algorithms used to solve non-numerical

problems, in particular those that arise in connection with the

organization of the computers themselves. These are really the basic

algorithms that make up the enormous scientific wealth, so to speak, of

the material power of applied mathematics. Each such algorithm is a

reusable tool, and therefore there are significant questions about

developing criteria for evaluating algorithms and how to analyze them.

The concept of an algorithm, like the concept of information,

cannot be precisely determined [5]. Therefore, there are a wide variety

of definitions - from "naive-intuitive" ("an algorithm is a plan for

solving a problem") to "strictly formalized" (normal Markov

algorithms).

Definition of modern mathematics:

- the sequence of actions with strictly defined performance rules;

- prescription specifying the content and sequence of operations

transforming raw data into the desired result;

- an accurate description of a computational process or any other

sequence of actions;

- an exact and complete order about the sequence of performing

a finite number of actions necessary to solve any task of this type.

Algorithm — is any system of calculations performed under

strictly defined rules, which, after some number of steps obviously

leads to the solution of the problem (A. Kolmogorov).

Algorithm — is the exact prescription specifying computation

process coming from the variable source data to the desired result

(A.Markov).

Algorithm – is formally described calculation procedure,

receiving input data (input algorithm or argument), and outputs the

calculation result to the output.

20

1.2.2. Objects of action in algorithms and programs

The objects of description in the schematics of the algorithms, and

later in the programs, are constants, variables, expressions (arithmetic

and logical) [4].

Constant – it is a value that has a constant value that does not

depend on the operation performed in the algorithm. For example, the

numbers 7, -1.34, 0.00556 can be constants.

Variable – is a value that can change in the implementation of the

algorithm. The variable has its own name – id, for example: X,v1.

The value of the variable is stored in the PC memory in a machine

word labeled with that name. In computational operations, the value of

the variable stored in the PC's memory is used. The variable before

computing operations must be defined, that is, it must be given a

specific value by input or assignment operations.

The result of the implementation of the algorithm is also a variable

or variables whose values are stored in the PC's memory and output as

needed.

Expression – sequence of constants, variables, functions, joined

by signs of arithmetic, logical or symbolic operations.

Example: a+b – arithmetic expression; z>5 – logical expression;

"need "+" insert" – symbolic expression.

1.2.3. Methods for describing algorithms

The algorithm developed must be described so that it is clear to

the executor. There are several ways to do this. These include

pseudocode, operator diagram, formula description, hierarchical

diagrams, Nessi-Schneiderman graphs and algorithm diagrams.

Pseudocode – the way to accurately describe ordinary language

sentences, in other words – a verbal description of the action sequences.

This method is not obvious and is used only for relatively simple tasks,

for example:

If k≤5 then

 а=3

 else

 а=0

21

An operator schema provides a string character record with

indexes to specify a given sequence of actions, for example:

A – calculation, P – verification, Я – end.

Formula description in which an algorithm written in the form of

one or more formulas, for example:

Hierarchical diagrams show the algorithm graphically, but not as

a flow of control but as a division of a solved tasks into subtasks,

for example (Fig.1.10):

Fig.1.10. Hierarchical diagrams

Challenge

Responsibilities 1 Responsibilities 2

…

Discrete 1

Discrete 2

Discrete 3

Discrete 1

Discrete 2

Discrete 3

…

…

…

https://www.multitran.com/m.exe?s=challenge&l1=1&l2=2
https://www.multitran.com/m.exe?a=118&s=discrete&l1=1&l2=2&init=1
https://www.multitran.com/m.exe?a=118&s=discrete&l1=1&l2=2&init=1
https://www.multitran.com/m.exe?a=118&s=discrete&l1=1&l2=2&init=1
https://www.multitran.com/m.exe?a=118&s=discrete&l1=1&l2=2&init=1
https://www.multitran.com/m.exe?a=118&s=discrete&l1=1&l2=2&init=1
https://www.multitran.com/m.exe?a=118&s=discrete&l1=1&l2=2&init=1

22

Nessie-Schneiderman's charts and graphs represent a sequence of

executable commands in graphical form, for example (Fig.1.11):

Fig.1.11. Nessie-Schneiderman's graphs

Algorithms are a universal way of documenting algorithms

because their appearance is independent of the language in which they

are implemented. Another advantage is the high clarity of the schemes.

Elements of the algorithm schematics are geometric shapes (symbols),

each of which defines a specific action, and flow lines that define the

sequence of actions (table 1.2). The type of action and the data

(operands) over which the action is performed are written inside the

characters in the traditional way (formulas, relations, etc.).

Fig.1.12. Algorithm

а=0

а=3

k>5

23

In constructing algorithms selected different depth of detail of

individual transactions. The diagrams of the algorithms indicate only

the flow lines, which have a break and a direction from the bottom up

or right to the left. Size (а) the shape of the algorithm (table 1.2) is

selected from the series 10, 15, 20 mm. These sizes can increase the

number of multiple of 5. Size b=1.5*а.

Table 1.2

Name, symbols of symbols (blocks) and functions that they display

Name Graphic image Functions

Process

Solution

Modification

Input, output

Subroutine

Start, stop

Connector (page)

Connector

(interstitial)

Flow lines

Comment

Perform an operation or group of

operations

Selecting the direction of the

algorithm according to the

specified conditions

Start of the cyclic process

Data input, output

Data input/output of paper

Using previously created and

separately described algorithms

Start, end, stop, sign in,

exit in subroutines

Break the flow line

Break flow line from another page

Connection lines

Explanation to the blocks

24

For easier reading schematics of algorithms, process numbers are

assigned to process symbols. The process character numbers are affixed so

that they can be read left – right and top – down regardless of the flow

direction.

When depicting schematics of algorithms should be guided by

a single system of program documentation, which includes the state

standards of schematics of algorithms and programs.

1.2.4. Rules of algorithm construction

The construction of algorithms in the flowchart language implies

the following rules:

1. The flowchart is built from top to bottom.

2. In any flowchart there is one element corresponding to the

beginning and one element corresponding to the end.

3. There must be at least one path from the beginning of the

flowchart to any element.

4. There must be at least one path from each flowchart element at

the end of the flowchart.

When constructing an algorithm, it is necessary to specify a set of

objects with which it will work. The formalized (encoded)

representation of these objects is called data. The algorithm starts

working with a certain set of data, which is called the input, and as a

result of its work produces data that is called the output, i.e. converts

input to weekend. Until we have formalized input, we cannot build an

algorithm.

The algorithm requires memory. The memory contains the input

data with which the algorithm begins to work, intermediate data and

output data that are the result of the algorithm.

The memory is discrete, i.e. consisting of separate cells.

A named memory cell is called a variable. In the theory of

algorithms, memory sizes are not limited, that is, it is believed that we

can provide the algorithm with any amount of memory necessary for

work.

25

1.2.5. Properties of algorithms

Note the basic properties of the algorithms:

- Discreteness (discontinuity, separation) – the algorithm should

represent the process of solving the problem as the sequential execution

of simple (or previously defined) steps. Each action provided by the

algorithm is executed only after the execution of the previous one has

ended.

- Determinism (certainty) – each rule of the algorithm should be

clear, unambiguous. After each step, you must indicate which step is

performed next, or give a stop command. Due to this property, the

execution of the algorithm is mechanical in nature and does not require

any additional instructions or information about the task being solved.

Example: Airplane control uses sophisticated algorithms that are

performed by a pilot or on-board computer. Each algorithm command

determines the unique action of the executor.

- Efficiency (finiteness, convergence) – the algorithm should lead

to the solution of the problem in a finite number of steps. It is necessary

to indicate what to consider as the result of the algorithm. For example.

The algorithm for adding integers in a decimal number system: firstly,

write the numbers in a column; secondly, make up the numbers of the

lower rank; thirdly - record the result under horizontal line. If the sum

obtained is greater than or equal to the value of the basis of the calculus

system (in this case 10), transfer the tens to the higher digit tens;

fourthly, repeat paragraphs 2 and 3 for all digits, taking into account the

hyphenation from the lower digits (Fig.1.13).

Fig. 1.13. An example of an algorithm for adding integers

in a decimal number system

- Mass character – the ability to select input from some set of

data (the scope of the algorithm). For example. The algorithms of

addition, subtraction, multiplication and division can be applied to any

numbers in various positional number systems.

26

- Formality – any performer who is able to perceive and execute

the instructions of the algorithm can act formally, that is, escape from

the content of the task, not delve into its meaning, but only strictly

follow the instructions.

- Efficiency – the opportunity to solve the task in an acceptable

time.

1.2.6. Types of algorithms

The classification of algorithms is carried out depending on the

goal, the initial conditions of the problem, ways to solve it, determining

the actions of the performer:

- deterministic (hard) — sets specific actions denoting them in a

single and accurate sequences, thereby providing an unambiguous

required or desired result, if process conditions are fulfilled, the task for

which the algorithm was developed;

- probabilistic (stochastic) — gives a program for solving the

problem in several ways or ways leading to the likely achievement of a

result;

- heuristic — the achievement of the final result of the action

program is not unambiguously predetermined, just as the entire

sequence of actions is not indicated, all actions of the executor are not

identified. For heuristic algorithms include, for example, instructions

and regulations. These algorithms use universal logical procedures and

decision-making methods based on analogies, associations, and past

experience in solving similar tasks.

In practice, not just algorithms are needed, but algorithms are

good in some broad aesthetic sense. One of the characteristics of the

algorithm's quality is the time it takes to execute it. Other characteristics

are the adaptability of the algorithm to computers, its simplicity,

transparency. As a rule, there are several algorithms for solving the

same problem, and it is necessary to decide which one is the best.

27

1.3. Methodologies and classification of algorithms design

methods

Engineering of algorithms and programs – the most critical stage

in the life cycle of software products, which determines how much the

program being created meets the specifications and requirements from

end users. The costs of creating, maintaining and operating software

products, the scientific and technical level of development,

obsolescence time and much more - all this also depends on the project

decisions.

Most of the work of programmers is related to writing source

code, testing and debugging programs in one of the programming

languages.

Algorithms and programs are the objects of the author’s right to

intellectual property.

Different programming languages support different programming

styles (methodologies or programming paradigms). Part of the

programming is to choose one of the languages that is most suitable for

solving an existing problem.

Different algorithmic languages require the programmer to have a

different level of attention to detail when implementing the algorithm,

which often results in a compromise between simplicity and

performance (or between the programmer’s time and the user’s time).

The design methods of algorithms and programs are very diverse,

they can be classified according to various criteria, the most important

of which are:

- eсextent of automation of project works;

- accepted methodology of the development process.

By the degree of automation of the design of algorithms and

programs, we can distinguish:

- methods of traditional (non-automated) engineering;

- methods of computer-aided engineering (CASE-technology

and its elements).

Non-automated engineering of algorithms and programs are

mainly used in the development of software products that are small in

complexity and structural complexity, which do not require the

participation of a large number of developers. The complexity of the

developed software products is usually small, and the software products

28

themselves are mainly applied in nature. If these restrictions are

violated, the productivity of developers decreases markedly, the quality

of development falls, and, paradoxically, the labor costs and the cost of

the software product as a whole increase.

Automated engineering of algorithms and programs has arisen

with the need to reduce the cost of design work, shorten their execution

time, create standard "blanks" of algorithms and programs that are

repeatedly replicated for various developments, coordinate the work of

a large team of developers, standardize algorithms and programs.

Automation can cover all or individual stages of the software

product life cycle, while the work of the stages can be isolated from

each other or make up a single complex, performed sequentially in time.

As a rule, an automated approach requires technical and software

“re-equipment” of the labor of the developers themselves (powerful

computers, expensive software tools, as well as advanced training for

developers, etc.).

Computer-aided engineering of algorithms and programs is only

possible for large firms specializing in the development of a certain

class of software products that occupy a stable position in the software

market.

Programming methodology – is a set of ideas, concepts,

principles, methods and means that determines the style of writing,

debugging and maintaining programs.

Let’s list the main methodologies (paradigms) of programming

along with their inherent types of abstractions:

- procedure-oriented – a set of principles, technologies and tools

based on the procedural or algorithmic organization of the structure of

the program code (procedures - methods, functions, programs);

- object-oriented – allow you to connect data with processing

procedures into a single whole – classes and objects (Object Pascal,

C ++, Java, etc.);
- logically oriented – a formalized description of the problem so

that the solution follows from the compiled description. It is indicated
what is given and what is required to be received, and the search for a
solution to the problem is assigned to the computer (Lisp, Prolog);

- parallel programming – a method of organizing computer
computing in which programs are developed as a set of interacting
computing processes that work in parallel (simultaneously).

There are other paradigms.

29

Structural programming

How to develop a good algorithm? There are a number of useful

techniques that mainly relate to structural programming methods.

Classical procedural programming requires the programmer to

provide a detailed description of how to solve the problem, i.e., the

formulation of the algorithm and its special notation. In this case, the

expected properties of the result are usually not indicated. The basic

concepts of the languages of these groups are the operator and the data.

With a procedural approach, operators are combined into groups –

procedures.

Structural programming as a whole does not go beyond this

direction; it only additionally captures some useful techniques of

programming technology.

The beginning of the development of structural design of

algorithms and programs falls on the 60s. Structural design is based on

consistent decomposition, focused structuring into individual

components.

Structural programming, most clearly expressed in the Pascal

language (PASCAL), arose during the development of a procedurally-

oriented approach, embedded in the historically first Fortran

programming language (FORTRAN).

The basis of structured programming techniques make the

following provisions:

1. A complex task is broken down into smaller, functionally

better-managed tasks. Each task has one input and one output. In this

case, the control flow of the program consists of a set of elementary

subtasks with a clear functional purpose.

2. The simplicity of the control structures used in the task. The

logical structure of the program can be expressed by a combination of

three basic structures: follow, branch, and loop.

3. An elaborated algorithms depicted in flowcharts.

4. Using basic structures, the use of an unconditional transition

can be completely eliminated, which is an important sign of structural

programming.

Structural design methods are a set of technical and organizational

principles. Consider some of them.

The first method involves reducing a difficult task to a sequence

of more simple tasks. If the problem is complex, then the step-by-step

30

method should be used, when the general structure of the algorithm is

first thought out and fixed without detailed elaboration of its individual

parts, but only the basic structures are used. Blocks requiring further

detail are indicated by dashed lines. Next, separate blocks are made,

without detailing the previous steps. So every step of the way, we're

dealing with a simpler task.

The method described is called top-down or private purpose

method.

The second method of algorithm development is known as the

lifting method. The lifting algorithm begins by making an initial

assumption or calculating the initial solution of the problem. Then

begins as fast as possible the upward movement from the initial to the

best decisions. When the algorithm reaches a point from which it is no

longer possible to move up, it stops. Unfortunately, we cannot always

guarantee that the final solution obtained by the lifting algorithm will

be optimal.

The third method is known as working backwards, that is, starting

from a goal or decision and moving toward the initial formulation of

the problem. Then, if these actions are reversible, we move back from

the formulation of the problem to the solution.

Let us dwell in more detail on the most effective, from our point

of view, method of the structural approach - top-down design. It is

based on the idea of levels of abstraction, which become levels of

modules in the program being developed. This allows the programmer

to first focus on determining what needs to be done in the program, and

only then decide how to do it.

In a top-down development, the initial problem to be solved is

divided into a series of sub-tasks subordinated in content to the main

task. Such a breakdown is called drillthrough or decomposition.

At the next stage, these tasks, in turn, are divided into smaller

subordinate subtasks, and so on, to the level of relatively small subtasks

that require small modules to solve.

Module – is a sequence of logically related operations, designed

as a separate part of the program.

Using modules has the following advantages:

- the ability to create a program by several programmers;

- simplicity of design and subsequent modifications of the

program;

31

- simplification of program debugging – search and elimination

of errors in it;

- the possibility of using ready-made libraries of the most

common modules.

Depending on the object of structuring distinguish:

- functionally-oriented methods – sequential decomposition of a

task or a holistic problem into separate, fairly simple components that

have functional certainty;

- data structuring methods.

For functionally oriented methods, first of all, given data

processing functions are taken into account, in accordance with which

the composition and logic of work (algorithms) of individual

components of the software product are determined. With a change in

the content of the processing functions, their composition, the

corresponding information input and output, redesign of the software

product is required.

The main emphasis in the structural approach is on modeling data

processing processes.

For data structuring methods, analysis, structuring and creation of

data models are carried out, in relation to which the necessary

composition of functions and processing procedures is established.

Software products are closely related to the structure of the processed

data, the change of which is reflected in the processing logic

(algorithms) and necessarily requires redesigning the software product.

The structural approach uses:

- diagrams of data flows (information and technological

schemes), which show the processes and information flows between

them, taking into account the “events” that initiate the processing

processes;

- integrated domain data structure (infological model,

ER-diagrams);

- decomposition diagrams – the structure and decomposition of

goals, management functions, applications;

- structural schemes – the architecture of a software product in

the form of a hierarchy of interconnected software modules with

identification of the relationships between them, the detailed logic of

data processing by software modules (flowcharts).

32

For a complete picture of the software product, descriptive textual

information is also required.

Traditional software development approaches have always

emphasized the differences between data and its processing.

So, information modeling-oriented technologies first specify the data,

and then describe the processes using this data.

Structural approach technologies are oriented, first of all, to data

processing processes with the subsequent establishment of the

necessary data for this and organization of information flows between

related processes.

To a greater extent, software products are not a monolith and have

a construction structure (architecture) —the composition and

interconnection of software modules.

Module – it is an independent part of the program that has a

specific purpose and provides specified processing functions

autonomously from other program modules.

Thus, the software product has an internal organization or

internal structure formed by interconnected software modules. This is

true for complex and multifunctional software products, which are often

called software systems.

Structuring programs is carried out primarily for the convenience

of development, programming, debugging and changes to the software

product. As a rule, software systems of great algorithmic complexity

are developed by a team of developers (2 - 15 or more people). Manage

the development of programs in the application of industrial

technologies for the production of programs is possible only on a

scientific basis.

The structuring of software products pursues the main objectives:

- to distribute the work among the performers, ensuring their

acceptable loading and the required terms for the development of

software products;

- build calendar schedules for design work and coordinate them

in the process of creating software products;

- control labor costs and the cost of design work, etc.

The structural “partition” of programs into individual components

serves as the basis for the selection of tools for their creation, although

there is an inverse effect – the choice of tools for a software developer

determines the types of software modules.

33

When creating software products, reusable modules are allocated,

their typification and unification are carried out, due to which the time

and labor costs for developing the software product as a whole are

reduced.

Some software products use modules from ready-made libraries

of standard routines, procedures, functions, objects, data processing

methods.

Among the many modules are distinguished (Fig.1.14):

- head module – controls the launch of a software product (exists

in the singular);

- control module – provides a call to other modules for

processing;

- work modules – perform processing functions;

- service modules and libraries, utilities – perform service

functions.

Fig. 1.14. Software product structure

In the process, the software activated the necessary software

modules.
Control modules specify the sequence of calls to execute the next

module. Information communication of the modules is ensured through
the use of a common database or inter-module data transmission
through exchange variables.

Main module

Module 2 Module 1
Libraries of procedures, objects,

and processing methods
Module n

…

Objects B

Objects A

Objects D

…

Methods 2

Methods 1

Methods k

…

Procedures 2

Procedures 1

Procedures m

…

34

Each module can be executed as a self-stored file.

For the functioning of a software product, it is necessary to have

complete software modules.

Structurally complex software products are developed as software

packages, and most often they are of an applied, application program

packages, is a system of programs designed to solve problems of a

particular class.

The components of the APP are united by common data (a

database), are informationally and functionally interconnected, and

have the property of being systematic, i.e. a combination of programs

has a new quality that is not available for a particular APP component.

The structure of the APP is, as a rule, multimodular.

The private purpose method looks very attractive. But, like most

common methods for solving problems or developing algorithms, it is

not always easy to transfer to a specific task. A rational choice of

simpler tasks is more a matter of art or intuition than of science.

Moreover, there is no general set of rules for defining the class of tasks

that can be solved with this approach.

Private goals can be set when the following questions are

answered:

Is it possible to solve private problems?

Is it possible to ignore some of the remaining tasks by ignoring

some conditions?

Is it possible to solve the problem on a case-by-case basis?

Is it possible to develop an algorithm that solves and satisfies all

the conditions of the problem but whose output is limited by some

subset of all the output?

Is there anything about a task that we didn't understand well

enough?

If you try to delve deeper into some of the features of the problem,

will it help you come to a solution?

Are we faced with a similar problem, whose solution is known?

Is it possible to change her decision to solve our problem?

Is it possible that this task is equivalent to a known unresolved

task?

Today, object-oriented programming has become complementary

to structural programming, creating the basis for the development of

modern software systems, and declarative programming, expressed in

35

two different approaches – functional and logical, has been opposed to

it when solving certain classes of problems.

Object-oriented technologies include specialized programming

languages and user interface development tools.

At the same time, data and processes are combined into logical

entities – objects that have the ability to inherit the characteristics

(methods and data) of one or more objects, thereby ensuring the reuse

of program code. This leads to a significant reduction in the cost of

creating software products, increases the efficiency of the life cycle of

software products (the duration of the development phase is reduced).

When the program is executed, a message is sent to the object, which

initiates the processing of the object data.

If the algorithm is developed, it can be handed to a person for

execution. Exactly following the instructions of the algorithm, the

performer, even unfamiliar with the solution, will get the solution.

In some cases, the desire to remain anything within the framework

of the structural-modular approach leads to unreasonable complication

of the algorithm and loss of its naturalness and clarity. In this case,

clarity should be preferred.

1.4. The problem of choice and analysis of complexity of

algorithms

The algorithm should:

- be easy to understand, translate into code and debug;

- efficiently use computer resources and run as quickly as

possible;

- the program should be executed only a few times: the cost of

the program is optimized by the cost of writing (rather than executing)

the program;

- solving a problem requires significant computational costs: the

cost of executing a program can exceed the cost of writing a program,

especially with repeated execution.

Note that the first two points contradict each other.

For practice, it’s not enough to know that the problem is

algorithmically solvable because computer resources (RAM and

processor time) are limited, you should choose the most efficient one

from equivalent algorithms.

36

Efficiency is a generalized characteristic for comparing

algorithms. Algorithm A1 is more efficient than algorithm A2 if

algorithm A1 is executed in less time and (or) requires less computer

resources (RAM, disk space, network traffic, etc.).

An efficient algorithm should satisfy the requirements of an

acceptable execution time and reasonable resource consumption.

The combination of these characteristics makes up the concept of

algorithm’s complexity. With an increase in the execution time of the

algorithm and (or) the resources involved, the complexity increases.

Thus, the concepts of efficiency and complexity are inverse relative to

each other.

The time of implementation of the algorithm (program execution)

is a function of:

- the duration of the input source information in the program;

- time complexity of the algorithm (program);

- quality of the compiled code of the executable program;

- machine instructions that are used for program execution;

- data size;

- source data.

The characteristic of the algorithm, which reflects the time spent

on its implementation, is called time’s complexity.

The characteristic of the algorithm, which reflects the computer

resource costs for its implementation, is called capacitive complexity.

In quantitative and qualitative estimates of the algorithm

associated with the determination of complexity, two approaches are

used – practical and theoretical.

The practical approach is connected with really executed

algorithms on specific physical devices. It is characterized by

parameters that can be measured and recorded.

The time’s complexity with this approach can be expressed in time

units (for example, milliseconds) or the number of processor cycles

spent on the algorithm.

The capacitive complexity can be expressed in bits (or other units

of information), the minimum hardware requirements needed to

execute the algorithm, etc.

The main (simplest) operations, analogues of machine

instructions:

- assignment of a variable to a value;

37

- arithmetic operation;

- comparison of two numbers;

- array indexing;

- linking the object;

- function call;

- return from the function.

To evaluate the time complexity, it is necessary – mathematically

estimate the time of its execution by counting operatsіy:

- write the algorithm in the form of code of one of the developed

programming languages (for example, VB or C ++);

- translate the program into a sequence of machine instructions

(for example, bytecodes used in a virtual machine);

- determine for each machine command i the time ti necessary for

its execution;

- find for each machine command i the number of repetitions ni

of command i during the execution of the algorithm;

- calculate the sum of the products ti * ni of all machine

instructions, which will be the execution time of the algorithm.

A practical assessment is not an absolute indicator of the

effectiveness of an algorithm. The quantitative values obtained with this

approach depend on many factors, such as:

- technical characteristics of the components that make up the

computing system. So, the higher the clock speed of the processor, the

more elementary operations per unit of time can be performed;

- characteristics of the software environment (the number of

running processes, the task scheduler operation algorithm, operating

system operating features, etc.);

- selected programming language for the implementation of the

algorithm. A program written in a high-level language is likely to run

slower and require more resources than a program written in low-level

languages with direct access to hardware resources;

- the experience of the programmer who implemented the

algorithm. Most likely, a novice programmer will write a less effective

program than a programmer with experience.

Thus, an algorithm executed in the same computing system for the

same input data can have different quantitative estimates at different

points in time. Therefore, the theoretical approach to determining

complexity is more important.

38

Theoretical complexity characterizes the algorithm without

reference to specific equipment, software, and implementation tools.

 In this case, the time’s complexity is expressed in the number of

operations, the clock cycles of the Turing machine, etc.

The capacitive complexity is determined by the amount of data

(input, intermediate, output), the number of cells involved on the Turing

machine ribbon, etc.
In a theoretical approach to evaluating efficiency, it is believed

that the algorithm is executed on some idealized computer for which
the execution time of each type of operation is known and constant. It
is also believed that the resources of such a computer are infinite,
therefore, capacitive complexity is usually not determined with a
theoretical approach.

The number of instructions (operations) performed on an
idealized computer is selected as the time characteristic of complexity.

Quantitative estimates obtained by the theoretical approach may
also depend on a number of the following factors:

- volume of input data. The larger it is, the longer it will take to
execute the algorithm;

- selected method of solving the problem. For example, for a
large amount of input data, the quick sort algorithm is more effective
than the bubble sort algorithm, although it leads to the same result.

The execution time of an algorithm usually depends on the
amount of input data, which is understood as the dimension of the
problem being solved.

The best way to compare the effectiveness of algorithms is to
compare their orders of complexity; applicable to temporal and spatial
complexity.

Example: the task of calculating the polynomial values

Pn (x)=an⋅xn+a(n-1)⋅x (n-1)+...+ai⋅xi+...+a1⋅x1+a0

Specified:

- array of coefficients A={A[0], A[1],…, A[n]}

- variable value x

Calculate polynomial value S = Pn(x)

Version 1 (Fig. 1.15)

For each term, except a0 to erect x to the set grade by sequential

multiplication and then multiply by a factor.

39

Assessment of time complexity:

- calculation i term (i=1...n) requires i multiplications;

- in all 1 + 2 + 3 + ... + n = n(n+1)/2 multiplications;

- required n additions and one initial value assignment operation a0 .

The time’s complexity of the algorithm:

Т(n) = n(n+1)/2 + n + 1 = n2/2 + 3n/2 + 1 operation.

Fig. 1.15. Algorithm version 1

Start Polinom (a,n,x)

s = a(0)

i = 1

p = a(i)

j = 1

p = p * x

j = j + 1

s = s + p

i = i + 1

End Polinom (a,n,x)

i <= n

i >= j

Output s
no

no

40

Version 2 (Fig. 1.16).

Horner's scheme

Pn (x)=a0+x(a1+x(a2+...(ai+x(a(n-1)+an⋅x))...)

S0 = an,

S1 = S0 x + an-1,

S2 = S1 x + an-2,

…,

Si = Si-1 x + an-i,

…,

Sn = Sn-1 x + a0,

Pn(x) = Sn

Fig. 1.16. Algorithm version 2

Assessment of time’s complexity:

- to calculate Si required 1 multiplication and 1 addition;

- in total, such an iteration is performed n times.

The time’s complexity of the algorithm:

Т(n) = n multiplications + n additions = 2n additions

no

Start Polinom (a,n,x)

s = a(n)

i = 1

s = s * x + A(n-1)

i = i + 1

End Polinom (a,n,x)

i <= n Output s

41

1.5. Typical structures of algorithms

In drawing algorithms must remember that the same problem can

be successfully solved using algorithms that differ from each other.

Which algorithms to choose? The requirements of compactness of the

algorithm and ease of its understanding will be natural. These

requirements are satisfied if the so-called typical algorithmic structures

are used in the developing of the algorithm.

Typical (basic) structures of algorithms are a limited set of blocks

and standard ways of joining them to perform typical action sequences.

Based on the concepts of structural approach, algorithm of any

complexity can be expressed by using basic structures.

1. Following. As a component is found in almost all algorithmic

constructions. Follow-up is characterized by the fact that the actions are

performed one after the other: symbols for determining variables, cal-

culations of intermediate and final values, output of calculation results

are placed sequentially. This procedure is called natural (Fig. 1.17).

Fig. 1.17. Algorithmic following

2. Branching. An algorithmic design in which, depending on the

value of the source data and the result of the condition check, one of

two alternative action sequences (branches) is selected.

If the specified condition is fulfilled (result is "yes" or True) one

branch is selected, if it is not fulfilled (result is "no" or False) - another.

To write conditions are selected or that the steps used logic

operations and comparison operations.

functionment 1

functionment 2

functionment n

https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2

42

Branching is also used when it is necessary to choose one of
several alternatives (not two, but three or more variants). To do this,
make up a combination of several industries.

The algorithms underlying this structure are called branching. Each
branch can be of any degree of complexity, but may not contain actions at all.

For each specific set of output data branching is reduced to
following.

The construction comes in three main ways:
1. The branched algorithmic construction consists of two

branches (Fig. 1.18 a).
2. Bypass is a separate branching case where one branch contains

no action (Fig. 1.18 b).
3. Multiple Choice is a generalization of a branch in which one

of the actions is selected depending on the value of the control variable
(Fig. 1.18 c).

Fig. 1.18 Basic branching structure:

a) branching; b) detour; c) multiple choice

criterion

 functionment 2

criterion

functionment

yes
no

no

yes

functionment
1

а)
b)

c)

1 2 і

i

functionment 1

functionment 2

functionment n

functionment i

…

…

n

https://www.multitran.com/m.exe?s=criterion&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=criterion&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2

43

Full branching allows you to organize two branches in the

algorithm (or otherwise), each of which leads to a general point of

merging, so the algorithm continues regardless of which path was

chosen.

Incomplete branching is a special case of branching and assumes

the presence of some algorithm actions on only one branch (that), the

second branch is absent, ie for one of the results of the check it is not

necessary to perform any actions, the control immediately goes to the

point of merger.

Multiple choice is a generalization of the branch where depending

on the value of the control variable i runs one of several actions.

3. Repeat. Algorithmic construction, which is a sequence of

actions performed repeatedly, under the truth of a given condition. Such

algorithms are called cyclic or cycles.

A loop body is a sequence of actions that are performed repeatedly

(in a loop).

Condition - the condition of the end of the cycle. If the result of

checking the condition True - loop ends, if False - loop continues.

If the opposite condition change (for example х>0 → х≤0),

умова закінчення циклу перетвориться в умову продовження.

Prerequisite cycle. The condition is checked early before the loop

body is executed, so the loop body may not perform at all (Fig. 1.19 а).

A loop with a condition. The condition check is done at the end

after the loop body is executed, so it is always executed at least once

(Fig. 1.19 b).

Fig. 1.19. Repeat: a) precondition loop; b) postcondition loop

criterion

body of cycle

body of cycle

criterion

yes

no

yes

no

а) b)

https://www.multitran.com/m.exe?s=criterion&l1=1&l2=2
https://www.multitran.com/m.exe?s=cycle%20body&l1=1&l2=2
https://www.multitran.com/m.exe?s=cycle%20body&l1=1&l2=2
https://www.multitran.com/m.exe?s=criterion&l1=1&l2=2

44

The peculiarity of all these structures is that they have one input

and one output, they can be connected to each other in any sequence.

When using basic structures created more complex (combined)

structure are allowed to use two approaches:

- connect one structure to another, creating a sequence of

structures. (Fig. 1.20);

- replace the functional blocks of each of the basic structures with

the nested structures. (Fig.1.21-1.23).

These rules allow you to build algorithms of any degree of

complexity, developing them not only "wide" but also "deep".

The resulting algorithms have a clear and clear structure.

Fig. 1.20. Following branching Fig. 1.21. Condition in

condition

Fig. 1.22. Loop in condition Fig. 1.23. Loop in loop

no

yes

yes

no

no

no

yes

yes

no

no

yes

yes

45

Control questions and tasks

1. What are the steps for solving computer problems?

2. Define the term "algorithm" and call its properties.

3. Define the term "program" for solving the problem on a computer.

4. List the tools for describing the algorithms.

5. Х is:

1) intermediate calculated value;

2) final calculated value;

3) basic calculated value.

6. Symbol (process) in the algorithm determines:

1) process input/output the information;

2) process of calculation of intermediate and final values;

3) the process of output information on paper;

4) the process of determining the beginning (end) solve the task;

5) the process of using the results of subtask algorithms.

7. Symbol (solution) in the algorithm determines:

1) process input/output the information;

2) process of calculation (solution) of intermediate and final values;

3) the process of selection the action, the implementation of which

depends on the condition.

8. Enter symbol that defines the process of input/output of paper:

1) ; 2) ; 3) ; 4) ;

5) ; 6) ; 7) .

46

9. Enter symbol that defines the process of calculation of intermediate

and final values:

1) ; 2) ; 3) ; 4) ; 5) .

10. The stage of solution of the task "Writing the program" involves:

1) verbal or schematic description of the final sequence of actions

(instructions), the task that leads to the decision;

2) description of algorithm in algorithmic language;

3) analysis of the obtained results.

11. The data can be divided into "Input" and:

1) Output;

2) Variable;

3) Constant.

12. *Calculated data (based on changes in the process of solving the

task) are divided into:

1) Output;

2) Input;

3) Variable;

4) Constant.

13. Enter symbol that defines the process of using the results of

subtasks:

1) ; 2) ; 3) ; 4) ;

5) ; 6) ; 7) .

14. The stage of solution of the task "Development of an algorithm"

involves:

1) a verbal or schematic description of the final sequence of actions

that leads to the solution of the task;

2) description of algorithm in algorithmic language;

3) description of the program code, preparation of help documentation

for the user.

47

15. The stage of solution of the task "Task statement and choice of

numerical method" NOT involves:

1) collection and processing of input information (forming of input

data);

2) formalization of the task;

3) setting goals and priorities;

4) selection and reasoning of mathematical model;

5) folding the final sequence of actions that leads to the solution of the

task;

6) definition of initial information, intermediate and final calculations.

16. The attribute of the algorithm is deterministic (certainty) involves:

1) the result or the message about the inability to get a result for the

specified input data;

2) splitting the algorithm into simple actions;

3) possibility to solve many problems by one algorithm;

4) possibility of receiving many results with certain input data;

5) possibility to select input from multiple data;

6) the uniqueness of the result of the input data.

17. *Enter a term that does NOT specify the type of algorithm:

1) lineal;

2) ramified;

3) loop;

4) insert;

5) combined;

18. The attribute of the algorithm is discretion involves:

1) a verbal or schematic description of the final sequence of actions

that leads to the solution of the task;

2) the uniqueness of the result of the input data;

3) the result or a message that the result cannot be obtained;

4) splitting the algorithm into simple actions;

5) possibility to solve many problems by one algorithm;

6) possibility of receiving many results with certain input data;

7) possibility to select input from multiple data.

48

19. The property of the algorithm results involves:

1) a verbal or schematic description of the final sequence of actions

leading to the decision;

2) the uniqueness of the result of the input data;

3) the result or a message that the result cannot be obtained;

4) splitting the algorithm into simple actions;

5) possibility to solve many problems by one algorithm;

6) possibility of receiving many results with certain input data;

7) possibility to select input from multiple data.

20. The property of the mass algorithm involves:

1) the result or the message about the inability to get a result for the

specified input data;

2) splitting the algorithm into simple actions;

3) possibility to solve many problems by one algorithm;

4) possibility of receiving many results with certain input data;

5) possibility to select input from multiple data.

49

UNIT 2. LINEAR COMPUTING PROCESSES

As stated earlier, the linear computing process is characterized by

the fact that the steps it breaks are performed one by one without

checking the conditions. Another name is the basic following structure [7].

For implement such a process it is necessary to:

First, generate the input.

These actions can be done in user input mode, such as "enter b, y".

Or assign values to variables constant, for example: b=4.7, y=-3.1,

where 4.7 і -3.1 the corresponding real numbers – constant (Fig. 2.1).

Fig. 2.1. Definition of input data: a) variable; b) constant

Second, write down the formulas to calculate.

It is necessary to observe the sequence of computation

expressions. It should be remembered that the implementation of the

program with non-user-assigned numeric values, numeric variables will

be assigned zero values (Fig. 2.2), for example:

Fig. 2.2. Calculations

Thirdly, organize the output of the results after the calculation.

To control the results can output data, which were introduced for

calculations, for example: constant values (Fig. 2.3).

Fig. 2.3. Output constant b and estimated х

Input b,y b=4.7; y=-3.1

x=(a+b)/a^2

Output b, х

а) б)

50

Consider the task that has a linear structure.

For example, algorithm of calculation function:

,

where ,

b – any number, not equal 0 (to avoid dividing by zero).

Will create the algorithm. In creating the algorithm (Fig. 2.4) we

will use the method of calculating the parts. To do this, denote, for

example, the numerator by the symbol Y1, the denominator by Y2.

Fig. 2.4. Algorithm

1

4

5

6

2

3

Start

Input b

a=3.45

x=(a+b)/a^2

Y1 =ln(x^2+1)

Y2 = 2 x^4+a+5

Y = 3+Y1/Y2

Output Y

End

7

8

9

5

4

Symbols:

2, 3 determine the input of variable (b)

and constant (a) values,

4, 5, 6, 7 – determine the calculation of

intermediate (x, Y1, Y2) and total (Y)

values,

8 - determine output.

51

All symbols of the algorithm are arranged sequentially.
The values of X, Y1, Y2, Y are stored in memory with their
corresponding names (identifiers).

It should be noted that the given algorithm is one of many possible
options for solving this task. For example, you can swap the symbols
(blocks) 2 and 3; calculate Y without dividing the process into separate
parts, immediately after writing down the X formula for calculating Y,
method of calculating the numerator (Y1) and the denominator (Y2) –
symbols 5 and 6 can also be any.

Note the symbols 2 and 3. The result of their implementation is
identical: in the corresponding memory cell will be placed numerical
value. However, if the symbol 2 indicates the input of any number from
the keyboard (the schema identifies the variable ID and but not the
value), then the symbol 3 - assigning a variable a specific value (the
schema identifies the variable ID and value itself).

The symbol 8 (output) is depicted and filled in like the symbol of
the input. Such technology allows to avoid errors by making algorithms.

Control questions and tasks

1. Define the term of "linear computing process".

2. Give instructions for types that make computing a linear process.

3. Specify the steps that lead to the calculation the arithmetic

expression:

1) 1– calculating sine function,

 2 – exponentiation,

 3 – multiplication,

 4 – addition,

 5 – subtraction;

2) 1 – exponentiation,

 2 - calculating sine function,

 3 – multiplication,

 4 – addition,

 5 – subtraction;

3) 1 - calculating sine function,

 2 – exponentiation,

 3 - addition,

 4 – multiplication,

 5 – subtraction.

52

4. Specify the steps that lead to calculating arithmetic expressions:

1) 1 – exponentiation b to 3,

 2 – multiplying the previous result by 2,

 3 – addition a,

 4 – calculating the exponent;

2) 1 – calculating the exponent,

 2 – exponentiation b to 3,

 3 – multiplying the previous result by 2,

 4 – addition a;

3) 1 – multiply 2 and b,

 2 – exponentiation b to 3,

 3 – addition a,

 4 – calculating the exponent.

5. Specify the sequence of processing variables

, where f – any value

1) a,k,f,z,d ; 2) k,f,z,d,a; 3) k,f,a,z,d; 4) k,z,f,d,a.

6. Specify the sequence of processing variables.

 , where y – any value

1) x,a,y,z; 2) y,x,a,z; 3) a,z,y,x; 4) x,y,z,a.

7. *Specify a scheme for calculating values

,

where b – any value

1) ; 2) ; 3) ; 4) .

53

UNIT 3. OVERALL COMPUTING PROCESSES

The branching is an algorithm in which the choice of action

depends on the fulfillment of certain conditions and values of the input

data or intermediate results.

These algorithms have several options for calculations, each

represented by a separate branch of computing. The branch is selected

by the control part of the algorithm.

The control part – "solution" symbols (otherwise called logical or

conditional) are connected for a given set of input data or intermediate

results guaranteed execution of actions on a single branch of the

algorithm. Selecting of variant given logical attitude or logical

expression.

Logical attitude – sequential writing of constants, variables,

arithmetic expressions, combined by attitude signs:

= , < , >, ≠ , ≤, ≥.

The attitude is compared by two numeric or symbolic values, and

if the result is “True”, produced 1, otherwise – 0 (Fig. 3.1).

Fig. 3.1. Logical attitudes generaly

The control part

criterion

functionment 1

True

+ (yes)

functionment 2

functionment 3

False

– (no)

https://www.multitran.com/m.exe?s=criterion&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=false&l1=1&l2=2

54

For example: 56=41 False result (0) (Fig. 3.2a),

 15<=20 True result (1) (Fig. 3.2b).

Fig. 3.2. Logical attitude

a – to analyze conditions 56=41; b – to analyze conditions 15<=20

If necessary, you can change the condition to the opposite, for

example: to split information stream into two parts – negative values x

and positive values х and zero (Fig. 3.3a). For this condition can be used

a schemes shown in the Fig. 3.3 b, and the Fig. 3.3 c.

Logical expression – sequential recording of logical attitudes,

combined by signs of logical operations:

logical multiplication (conjunction) or operation "AND" is

indicated by a sign /\ (Fig. 3.4);

logical addition (disjunction) or operation "OR" is indicated by a

sign \/ (Fig. 3.5);

logical negation (inversion) or operation "NOT" is indicated by a

sign .

The result of logical operations given in the truth table and logic

scheme (Fig. 3.6).

56=41

functionment 1

+ (yes)

functionment 2

functionment 3

False (0)

- (no)

15<=20

functionment 1

True (1)

+ (yes)

functionment 2

functionment 3

- (no)

а

b
b

https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=false&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2

55

Fig. 3.3. Methods to implement a logical attitude

Fig. 3.4. Variants of conjunctionfor logical expression 0<X<2

x 0

x<0

x≥0

I

 IІ

x<0

functionment 1

- (no)

functionment 2

functionment 3

True (1)

+ (yes)

x>=0

functionment 1

True (1)

+ (yes)

functionment 2

functionment 3

- (no)

2
0<X

X<2

yes

yes

no

no

1

functionment

x 0

x < 2 0 < x

X<2

0<X

yes

yes

no

no

1

2

functionment

x 0

x < 2 0 < x

b

c

а

https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2

56

Fig. 3.5. Variants of disjunction for logical expression 0<X or X > 2

Table 3.1

The truth table of conjunction, disjunction, inversion

F= a F=a /\ b F=a \/ b

a F a b F a b F

0 1 0 0 0 0 0 0

1 0 0 1 0 0 1 1

 1 0 0 1 0 1

 1 1 1 1 1 1

0

x > 2 0 < x

X<2

0<X

yes

yes

no

no

1

2

functionment

X>2

X<0

no

no

yes

yes

6

7

functionment

X<0

X>2

no

no

yes

yes

6

7

functionment

https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2
https://www.multitran.com/m.exe?s=functionment&l1=1&l2=2

57

Fig. 3.6 Logical scheme

Logical operations are performed in order of decreasing priority

as follows: , /\, \/. For example (Fig. 3.7):

Fig. 3.7. Complex logic scheme

For example: if a=0; b=1; c=0 logical expression

a /\ b V (c) /\ a V b /\ (a) /\ (b)=1 (Fig. 3.8).

You can change the priority using parentheses. For example,

if a=0; b=0; c=0; d=1 logical expressions take on different meanings:

a /\ b /\ (c V d) = 0 /\ 0 /\ (0 V 1) = 1 /\ 0 /\ 1 = 0

a /\ b /\ c V d = 0 /\ 0 /\ 0 V 1 = 1 /\ 0 V 1 = 1

0
1

 a

0

a /\ b 0
0

0

a \/ b 0
0

1
0

 a

0

a /\ b 1
0

0

a \/ b 1
1

1

a /\ b 0
0

1

a \/ b 0
1

1

a /\ b 1
1

1

a \/ b 1
1

0
1

a \/ b

1

0

0

a /\ b

0
1

 a

1

a \/ b

58

If a=0; b=1; c=0 то (0) /\ 1 V (0) /\ 0 V 1 /\ (0) /\ (1)
1) make the operations

inversion (0) (0) /\ 1 V (0) /\ 0 V 1 /\ (0 /\ (1)
get 1 /\ 1 V 1 /\ 0 V 1 /\ 1 /\ 0
2) make the operations

conjunctions(/\) 1 /\ 1 V 1 /\ 0 V 1 /\ 1 /\ 0
 1 V 0 V 1 /\ 0

отримаємо 1 V 0 V 0
3) make the operations

disjunctions(\/) 1 V 0 V 0

 1 V 0

get 1

Fig. 3.8. Example of calculating logical expressions

Consider examples of making algorithms that have a branched

structure.

For example 1. Variants of algorithms are shown in the Fig. 3.9–3.11.

𝑦 = {
2 ∗ 𝑥 + 3, 𝑖𝑓 𝑥 < 0
4 ∗ 𝑥 − 7, 𝑖𝑓 𝑥 ≥ 0

 where x – any number

The output data states two conditions (X<0) і (X>=0), but in the

algorithm it is enough to write down one of them (for example X<0).

This symbol has two outputs: for symbol 4, if X<0, and for

symbol 5 (alternative), if X>=0. The second condition may be:

otherwise (in other cases).

59

Fig. 3.9. A branching algorithm with a simple condition

(logical attitude version 1)

Fig. 3.10. A branching algorithm with a simple condition

(logical attitude version 2)

Start

Input x

x<0

y=2*x+3 y=4*x-7

+ (yes) - (no)

Output y

End

1

2

3

4 5

6

7

Start

Input x

x≥0

y=2*x+3

y=4*x-7

- (no) + (yes)

Output y

End

1

2

3

4 5

6

7

60

Fig. 3.11. A branching algorithm with a simple condition

(logical attitude version 3)

Start

Input x

x≥0

y=2*x+3

- (no)

+ (yes)

Output y

End

y=4*x-7

1

2

3

4
5

6

7

61

62

63

64

Control questions and tasks

1. Define the concept "branched computing process".

2. Define the concept "logical attitude".

3. Give the list of attitude operations.

4. Define the concept "logical expression".

5. What logical operations are used in logical expressions?

6. Write down formulas for the calculations that correspond to the

given fragments of the schematics of the algorithms.

7.

 Y =

t<3
yes

yes

k>5

y=2

x

y=5

x

65

8. The branched algorithm is called:

1) in which the choice of action depends on the performance of the

condition;

2) in which it is possible to make many calculations;

3) in which actions are performed sequentially - one by one.

9. An algorithm which selected what to do next depends on the

performance of certain conditions is called:

1) branched;

2) distributed;

3) lineal;

4) loop;

5) iterative.

10. *Selecting branches in branching algorithm can be:

1) the result of performing logical reasoning;

2) the result of performing a logical definition;

3) the result of performing a logical attitude;

4) the result of executing a logical expression.

11. Choose the right scheme to calculate the variable 𝒂 = {
𝒙, 𝒊𝒇 𝒙 > 𝒚
𝒚, 𝒊𝒇 𝒙 ≤ 𝒚

1) ; 2) ; 3) .

12. Part branched algorithm that controls intended:

1) determining variable or constant values;

2) unambiguous select one of the options settlement;

3) output results;

4) calculations.

13. *In the part of the branched control algorithm, the condition is

specified by:

1) logical expression;

2) logical attitude;

3) logical consideration;

4) logical determinant.

66

14. Choose the right scheme to calculate the variable: 𝒂 = {
𝒙, 𝒊𝒇 𝒙 = 𝒚
𝒚, 𝒊𝒇 𝒙 ≠ 𝒚

1) ; 2) ;

3) ; 4) .

15. *Х is:

1) intermediate value;

2) final value;

3) input value;

4) control variable;

5) the calculated value.

67

16. When calculating which variable does NOT use branching?

𝒙 = {

𝒕 + 𝟏, 𝒊𝒇 𝒕 < 𝟏
𝒕, 𝒊𝒇 𝒕 = 𝟏

𝒕 − 𝟏, 𝒊𝒇 𝒕 > 𝟏
 𝒑 = {

𝟏 + 𝒛, 𝒊𝒇 𝒛 = 𝟎 𝒂𝒏𝒅 𝒚 = 𝟎
𝒛 + 𝒚, 𝒊𝒇 𝒛 ∗ 𝒚 < 0
𝟐𝟓, 𝒊𝒏 𝒐𝒕𝒉𝒆𝒓 𝒄𝒂𝒔𝒆𝒔

 𝒚 =

{

𝒂𝟑 + 𝒙, 𝒊𝒇 𝒂 < 𝒙 < 10 𝒂𝒏𝒅 𝒂 < 10

𝒂 + 𝒔𝒊𝒏(𝒙), 𝒊𝒇 𝟏𝟎 < 𝒙 ≤ 𝟏𝟓 𝒂𝒏𝒅 𝒂 = 𝒙

𝒚 − 𝒙 − 𝟏, 𝒊𝒇 𝒙 = 𝟐𝟎 𝒐𝒓 𝟐𝟓 < 𝒂 ≤ 𝟑𝟎

𝒆𝒙−𝒂, 𝒊𝒏 𝒐𝒕𝒉𝒆𝒓 𝒄𝒂𝒔𝒆𝒔

 where t, а - any values

1) x; 2) y; 3) z; 4) p.

17. Enter the correct order for the values to be calculated

𝒙 = {

𝒕 + 𝟏, 𝒊𝒇 𝒕 < 𝟏
𝒕, 𝒊𝒇 𝒕 = 𝟏

𝒕 − 𝟏, 𝒊𝒇 𝒕 > 𝟏
 𝒑 = {

𝟏 + 𝒛, 𝒊𝒇 𝒛 = 𝟎 𝒂𝒏𝒅 𝒚 = 𝟎
𝒛 + 𝒚, 𝒊𝒇 𝒛 ∗ 𝒚 < 0
𝟐𝟓, 𝒊𝒏 𝒐𝒕𝒉𝒆𝒓 𝒄𝒂𝒔𝒆𝒔

 𝒚 =

{

𝒂𝟑 + 𝒙, 𝒊𝒇 𝒂 < 𝒙 < 10 𝒂𝒏𝒅 𝒂 < 10

𝒂 + 𝒔𝒊𝒏(𝒙), 𝒊𝒇 𝟏𝟎 < 𝒙 ≤ 𝟏𝟓 𝒂𝒏𝒅 𝒂 = 𝒙

𝒚 − 𝒙 − 𝟏, 𝒊𝒇 𝒙 = 𝟐𝟎 𝒐𝒓 𝟐𝟓 < 𝒂 ≤ 𝟑𝟎

𝒆𝒙−𝒂, 𝒊𝒏 𝒐𝒕𝒉𝒆𝒓 𝒄𝒂𝒔𝒆𝒔

 where t, а - any values:

1) t,a,x,y,z,p;

2) t,a,p,y,z,x;

3) t,a,x,z,y,p;

4) t,a,z,p x,y;

5) t,a,p,z,x,y.

18. Logical attitude – is:

1) sequential writing of variables, constants, arithmetic expressions

and standard functions, joined with signs of logical operations (AND,

OR, NOT);

2) sequential writing of variables, constants, arithmetic expressions

and standard functions, joined by symbols of the comparison operation

(>,<,<=,>=,= etc.);

3) sequential writing of logical expressions combined by signs of

logical operations (AND, OR, NOT etc.);

4) exceeding the value of one mathematical value over another.

19. Define the sequence of the branched projection algorithm:

68

1) 1 – input of initial data (variable and constant),

2 – control part,

3 – calculation part,

4 – output of intermediate and final values;

2) 1 – input of initial data (variable and constant),

2,3 – control part,

4 – output of intermediate and final values;

3) 1 – input of initial data (variable and constant),

2 – calculation part,

3 – control part,

4 – output of intermediate and final values.

20. Sequential writing of variables, constants, arithmetic expressions

and standard functions, joined by the symbols of the comparison

operation (>,<,<=,>=,= і т.д.) is called:

1) logical expression;

2) logical definition;

3) logical consideration;

4) logical attitude.

21. Sequential writing of expressions combined with signs of logical
operations is called:
1) logical attitude;
2) logical definition;
3) logical consideration;
4) logical expression;

5) logical determinant.

22. The part of the control algorithm contains:

1) logical addition (operation OR);
2) logical multiplication and logical addition;
3) logical multiplication (operation AND);
4) logical objection (operation NOT).

69

23. When calculating a variable Z will be used Х:

1) over 10;

2) less 100;

3) from 10 to 100;

4) the value of the full range.

24. When calculating a variable Z will be used Х:

1) over 10;

2) less 100;

3) from 10 to 100;

4) the value of the full range.

25. When calculating a variable Z will be used Х:

1) over 10;

2) less 100;

3) from 10 to 100;

4) the value of the full range.

26. When calculating a variable Z will be used Х:

1) over 100;

70

2) less 10;

3) from 10 to 100;

4) the value of the full range.

27. *Name the attitude operations used to organize logical attitude:

1) >=; 2) <= ; 3) v; 4) ^; 5) ¬; 6) <.

28. *Name the logical operations used to organize the logical

expressions:

1) >=; 2) <=; 3) ¬; 4) ≠; 5) < ; 6) v; 7) ^.

29. *Select the correct scheme for calculating the variable A

1) ; 2) ;

3) ; 4) .

30. What is the variable А, if Х=22 and Y=55 :

1) Y; 2) X; 3) 3.

31. What is the variable А, if Х=2 and Y=55 :

1) Y; 2) X; 3) 3.

71

32. What is the variable А, if Х=22 and Y=5 :

1) Y; 2) X; 3) 3.

33. Part of the algorithm , that controls is NOT used:

1) logical operations;

2) logical attitude;

3) arithmetic operations.

34. *The result of calculating a logical expression or a logical

relationship can be a value:

1) True;

2) False;

3) Not Determined;

4) Fault.

35. The part of the control algorithm contains:

1) logical multiplication (operation AND);

2) logical addition (operation OR);

3) logical multiplication and logical addition;

4) logical objection (operation NOT).

72

36. The part of the control algorithm contains:

1) logical multiplication (operation AND);

2) logical addition (operation OR);

3) logical multiplication and logical addition;

4) logical objection (operation NOT).

37. Specify the condition under which values are selected

or :

1) 10<=X ^ Х<100 v Y>=10;

2) 10<=X v Х<100 ^ Y>=10;

3) X<=10 ^ Х<100 v Y>=10;

4) X<=10 v Х<100 ^ Y>=10.

38. Specify the condition under which values are selected

or or :

1) 10<=X ^ Х<100 v Y>=10 ^ Z=0;

2) 10<=X v Х<100 ^ Y>=10 v Z=0;

3) X<=10 ^ Х<100 v Y>=10 ^ Z=0;

4) X<=10 v Х<100 ^ Y>=10 v Z=0.

73

UNIT 4. CYCLICAL COMPUTING PROCESSES

4.1. Simple arithmetic cyclic computing processes

In the practice of engineering calculations have to perform

multiple calculations on the same mathematical dependencies at

different values of the input variables. Such repetitive processes are

called loops.

The cyclic algorithm is called algorithm that contains a sequence

of operations that are performed repeatedly. Such algorithms are based

on typical repetition structures. Using loops can greatly reduce the flow

chart and size of the program.

Conditions ending cycle can be checked before executing the loop

– a cycle with a prerequisite, or after executing a loop, a loop with a

condition.

For images of the diagram cyclic structure can be used "solution"

together with the symbol "process" or special character "modification".

In the loops are parameters (counter managing variable) – the

numerical variable, which is used to organize repetitions of the cycle.

According to the method of specifying the number of repetitions

of the loops body distinguish arithmetic (regular) and iterative cycles.

In iterative cycles, the number of repetitions usually cannot be

determined before execution and depends on the specified condition for

exiting the loop.

Arithmetical is loops, the number of repetitions of which can be

explicitly specified in the condition of the task or, if necessary,

calculated before the start of its execution. The loop parameter, in this

case, is determined by the boundaries and step of its change, which are

given by constants, variables, or expressions.

Arithmetic cycles with one parameter are called simple, with several

– inserted.

To arrange a simple arithmetic loop, follow these steps:

1) set the initial value of the loop parameter;
2) check the condition of the end of the loop – whether the value

of the cycle parameter is included in the interval of its change. If the
parameter value is no more than the final value at a positive step or at
least the initial value at a negative step, then the loop body is executed.
Otherwise, the loop is exited;

74

3) to perform the given calculations and, if necessary, output of

results;

4) change cycle parameter by step size;

5) back to item 2.

For example. To make the algorithm of calculation of function

values: y=sin(xa)-b, a=9.63, b=5.1. Loop parameter x changes in the

interval from хп=1 to xк=3 in increments hx =0.5

Fig. 4.1. A cyclic algorithm with a symbol

a - "modifier"; b - "solution"

End

8

1

7

Input

xп , xк , hx

y=sin(xa)-b

Output

x, y

Start

a =9.63

b =5.1

End

x=xп , xк , hx

2

3

4 4

6

5

1 Start

x=xп

x<= xк

x=x+hx

yes

3

4

5

6

7

9

Output

x,y

y=sin(xa)-b

a =9.63

b =5.1

Input

xп , xк , hx

2

75

The number of repetitions of the arithmetic loop is calculated by

the formula:

where хп – the initial value of the loop parameter;

xк – the final value of the loop parameter;

hx – the step of changing the parameter;

 – the operation of taking an integer part of a number.

The task algorithm is a simple cyclic computing process with an

implicitly specified number of repetitions.

In the algorithm shown in Fig. 4.1a, the loop is organized using

the symbol 4 - "modifier". This symbol defines the initial, final value

of the parameter of cycle X and the step of changing it. Calculation of

the function performed in the symbol 5.

Fig. 4.1б shows a diagram of this algorithm with the symbol

"solution". Its symbols 4, 5, and 8 correspond to the symbol 4 of the

scheme in Fig. 4.1a.

Assignment of symbols:

symbols 2-3 – formation of input data;

symbol 4 – setting the initial value of parameter X;

symbol 5 – check the condition of the end of the loop;

symbol 6 – calculating functions;

symbol 7 – output the calculated value of the function and the current

value of the cycle parameter;

symbol 8 – calculating the next value of the cycle parameter.

A recurrent expression is an expression that describes any element

of a sequence of numbers, where each subsequent element is calculated

from the previous one.

For example, formula X=X+H means: to content X add H and

write the result in X, that is, the recurrent expression binds consistently

calculated values. The input data for the next step is the results of the

previous one.

Recurrent expressions are also used to calculate the sum of the

finite data output.

76

To calculate the sum of a number of data, follow these steps:

generate initial data;

determine the initial state of the adder, which will be implemented

accrued;

organize accrued cycle by adding new values to the sum of all previous;

output the result.

For example. Make the algorithm for calculating the sum of 15

values of function Y = sin(AX+B).

Initial value X=2; step change H=1.5; A, B – arbitrary numbers.

In the algorithm on Fig. 4.2 the number of repetitions is specified

in the task condition.

Fig. 4.2

Assignment of symbols:

symbols 2-3 – formation of input data;

symbol 4 – preparation (zeroing) of the adder;

1

2

3

4

5

6

7

8

9

10

Start

Input А, В

Х=2

S=0

Y=sin(X*A+B)

S=S+Y

X=X+1,5

N=1; 15

Output S

End

77

symbols 5-8 – organization of a loop with a parameter N

(the number of calculation functions Y); calculation of the function Y;

adding received values; increment X the magnitude step;

symbol 9 – output value.

For example. Make algorithm for calculation of factorial Y=N!

Factorial – is the product numbers of natural series from 1 to N.

The algorithm for calculating the factorial is in Fig. 4.3.

Assignment of symbols:
symbol 2 – input N. N – variable, so given different values can be
calculated factorial of any number;
symbol 4 – preparation of the variable Y, in which the product will
accumulate. Given that any number will remain important in the
multiplication of 1 to store the product initial value adder will be equal
to 1;
symbols 5-7 – organization of cycle for accumulation of product
of N values of X;
symbol 8 – output value.

Fig. 4.3 Algorithm for calculation of factorial Y=N!

1

2

3

4

5

6

7

Start

Input N

Y=1

Y=Y*X

Output Y

End

X=1; N

Start

Input N

Х=1

Y=1

Y=Y*X

X=X+1

Output Y

End

X<=N
yes

8

9

1

2

3

4

5

6

7

78

4.2. Nested cyclic computing processes

Along with simple cyclical process in constructing algorithms

used nested cyclic computing processes..

A nest is called a loop that contains one or more cycles. A cycle

that covers other cycles is called an external cycle, and others – internal.

The basic rule for constructing nested loops – is the coverage of an

external cycle of one or more internal.

Nested loops are used when calculating functions or calculating

expressions that depend on several arguments. Each cycle is organized

in the same way as a simple cycle.

For example. Make the algorithm (Fig. 4,4) for calculating

the function , if ,

Loop parameters change sequentially, that is, when one sense

parameters of the loop setting internal cycle consistently takes all its

value.

The result will be a table:

 x=0 a=0 y=. . .

 x=0 a=0.2 y=. . .

 x=0 a=0.4 y=. . .

.

 x=0 a=2 y=. . .

 x=0.1 a=0 y=. . .

 x=0.1 a=0.2 y=. . .

 x=0.1 a=0.4 y=. . .

.

 x=1.7 a=2 y=. . .

End

Start

x=0;1.7; 0.1

a=0; 2; 0.2

6

3

2

1

4

Output

x,a,y

5

Fig. 4.4

79

The total number of calculations (execution of symbols 4 and 5)

is determined by the product of the number of repetitions of the outer

loop and the inner loop. The appropriate calculations:

N=((1.7-0)/0.1+1)*((2-0)/0.2+1)=198

that is, 198 calculations will be performed, and the output will result in

198 lines. Nested in cyclic processes can be not only other loops, but

also branching, and fragments of linear type.

For example. Make the algorithm for calculating and deriving the

values of a function:

casesother in)cos(

0),sin(

axb

xaandxifaxa
y

where

This algorithm (Fig. 4.5) is a nested cyclic branching process.

Fig. 4.5

6

1

End

Start

x<0

a<x

2

3

4 10

5

Так

8 7

9

Так

Output y

Input b, hx, ha

Ні Ні

80

An internal computing process is present in the inner loop. Each

branch can contain fragments of branching linear type (symbols 7, 8, 9).

The nesting depth, that is, the number of open cycles on the plot

of the algorithm, is not limited. Restrictions may appear later, when

writing programs due to insufficient capacity used programming

system.

For example. Make the algorithm for calculating and deriving the

values of a function:

Segmenting by parts, we get:

Each of the variables p, f, q, B is determined by sequential

accumulation in the respective loops. Here symbols 5, 10, 15, 16 і 17 –

are recurrent ratios for the accumulation of sums and products. This is

a nesting: value p is used to calculate individual additions in the sum Y,

and so the accumulation cycle Y (symbols 6-17) covers the

accumulation cycle of value p (symbols 8-10).

Similarly, value q is the separate application for the amount Y,

and the calculation loop q (symbols 11-16) is nested in the calculation loop

Y. For calculating q need to calculate the value of factorial i! – value f.

This is done in a loop (symbols 13-15), that is nested in the calculation loop

q, because the value f is under the sign of the product q and depends on the

variable і.

Factorial value A! – value B is calculated in a loop (symbols 3-5),

that is not nested. This is based on the conditions of the task, because

A! can be taken from the sign of sum and product.

So it is necessary to analyze other tasks that require the

construction of nested structures.

In this example, you need to calculate the values of sums and

outputs several times. For accumulate sums or product must be used

recurrence relations. In the algorithm (Fig. 4.6) are used secondary

values.

81

Fig. 4.6

у=0

х=0, 10

р=0

і=1, N

р=p+i/(x2+1)

Q=1

f=1

f=f*k

і=1, N

k=1, i

Q=Q*X/F

y=y+ (B/p+BNQ)

Output y

 y

End

7

8

9

18

19

10

11

12

13

14

17

15
16

1
Start

Input N,A
2

3
B=1

j=1,A

B=B*J

4

5

6

82

4.3. Iterative cyclic computing processes

In addition to arithmetic loops in engineering practice are used

iterative cyclic computing processes.

Iteration loop – it is a computational process in which the number

of repetitions of a loop body is unknown and depends on the condition

of achieving the desired result. In such algorithms, it is necessary to

ensure that the cycle exit condition is fulfilled, that is, the convergence

of the iterative process.

For example. Calculate the function Y, that represented by the

sum of the elements of an infinite convergent number series:

Based on that, that the number row is infinite, then for practical

calculations they are limited by the number of elements, guided by the

set accuracy E calculate the sum Y.

A convergent numerical series – these are a series of values (serie of

elements), the value of each is less than the previous value of this serie.

Virtually calculating the sum of the elements is stopped on the element,

which is lower in value than the set accuracy E. All the following elements

(which are also less than E), disregard. If the values of the elements change

as shown in Fig. 4.7, then the amount will be included only the first four

elements. The fifth element and the next ones in the amount will not come

out.

Iterative algorithms for calculating sums of infinite series contain

the following steps:

 input data;

 setting the initial value of the sum and the auxiliary variables,

if it necessary;

 calculating the value of the current element;

 comparing a series element with a given accuracy Е;

 if the element is not less Е, then it is added to the accumulated

sum, change the values of the auxiliary variables, after which the next

element is calculated, and the loop repeats;

 if the element is less than Е, then the accumulation of the sum

is stopped and the result is output.

83

When constructing an iterative computational process,

the use of the symbol "modifier" is invalid (the upper value of the loop

parameter is unknown).

The value of

the module series

Accuracy Е

1 2 3 4 5 6 7 8 9 10 11
 № series element

Fig. 4.7. The dependence the value of an element

of a convergent serie on its number

On Fig. 4.8 the algorithm for finding the sum Y. The

accumulation of the sum of elements is performed in a symbol 10 using

recurrence dependency Y = Y+Z, where Z – the value of the next

calculated addition of the sum.

Each following addition is different from the previous one by

values, that included in it (the numerator and denominator change). To

track these changes, the algorithm used auxiliary variable i. It specifies

the extension number, that is calculated, і used to define the current

number Z=i/(F+ i).

In the formula for Z includes values factorial i!, which is

calculated in symbols 5-7 and marked as F.

Symbols 3 and 4 set the initial value of the sum Y and value of i.

Symbol 9 – checking the need for adding Z to the sum. We add,

if |Z|>Е and its value cannot be ignored. Check series, which may have

negative elements, is performed using the value of the module.

Exit the iterative loop can be performed at any step when the

specified precision condition is reached. If the given example will

introduce each time different values , then the value of the current

term will be different. Therefore, it is impossible to predict the number

of repetitions at the same accuracy in advance.

84

Fig. 4.8

For example (Fig. 4.9), an approximate calculation of the square

root of the number X: Y=√X

Assume Y0=X Each of the following values is calculated by the

preceding to the formula: Yi=1/2*(Yi-1 + X / Yi-1)

We finish the iterative process when the condition is fulfilled

 | Yi - Yi-1 | < Е,

Start

Input a

Y=0

i=1
4

3

2

3

4

Output Y

End

9

13

Z=i/(F+ ^i)

Y=Y+Z

i=i+1

8

9

10

11

12

yes

F=1

k=1,i

F=F*k

5

6

7

85

where Е – given accuracy of finding the root Е=10-5

Y=√4 Y0=4 Y1=2.5 Y2=2.05 Y3=2.0006 etc.

Use of cyclic algorithms for tasks of finding extreme values of

functions.

Point x0 is called the point of local (relative) maximum for a

function f(x), if the value of the function at this point more, than the

value of the function at the closest points.

Similarly, point x0 is called the point of local (relative) minimum

for a function f(x), if the value of the function at this point is less, than

the value of the function at the closest points.

Start

Input х, Е

y=x

z=y-y*

Output x, y

End

yes

2

3

4

5

7

y=y*
6

8

9

Fig. 4.9

86

Global extremum (Fig. 4.10) – is the largest (smallest) the

function of all local maximums (minimums).

In solving engineering problems, as a rule, this is the value you

need to find. There are cases of several equal global extremes in

different parts of the domain the function definition.

The function can be defined in various ways: tabular, analytical

(using the formula), descriptive and graphic.

The tabular way is, that all the numeric values of the argument are

in one line, and the value of the function – in the second line so that

each value of the argument corresponds to a specific value of the

function.

In the analytical method, the function is given by a mathematical

formula, by which the value of Y is calculated by a given value of X.

In the descriptive way, the relations between X and Y is expressed

in a verbal description, for example, Y is the largest integer not

exceeding X.

Graphical method – image in a rectangular coordinate system of

a curve line Y=f(X).

With any method of setting a function to calculate the extremum

must have a certain set of values X and Y=f(X) at a given research

interval.

Regardless of the type of problem to find extremum can be used the

same algorithm, that is, the minimization task can be easily transformed

into a maximization task, by changing the sign of the function to the

opposite.

Fig. 4.10

Because the analytic expression of a function is constant over the

interval of definition, then its different values arise when changing the

parameters (arguments) of this function. Therefore, the procedure for

determining the extreme value of the function is performed in a loop.

F(x)

-F(x)

X

Y

min

max

87

If as the argument changes gradually, the function also changes

gradually, then it is said that the function is continuous.

In this small change of the argument corresponds to a small

change of function. Let's give a strict definition.

Function y = f(x) is called continuous at the point х0, if defined in

some vicinity of this point (including the point itself) and the limit of

function at a point х0 is equal to the value of the function at the very

point:

 .

Geometrically the continuity of a function at an interval means

that the graph of this function at a given interval is a solid line without

jumps and breaks. In other words, the individual points on the graph of

a continuous (interval) function can be connected by a solid line.

They say that the point х0 is a breakpoint for the function y = f(x),

if the function exists around this point (in the point х0 the function may

or may not exist), but in the point х0 continuity conditions are satisfied.

It should be noted that there are gaps of 1st or 2nd kind of function

f(x) does not affect the following method, because it can provide

verification of current measured value function and reject critical

points, providing the appropriate message in the algorithm.

Consider the example of algorithm of maximum function (similar

for the minimum).

Before starting the cycle to determine the maximum value of the

function Y=f(x) calculate the first value of the function, taken as a

maximum, that is Ymax=Y1. To calculate the next function value, we

change the value of the loop parameter by a step і, if a new parameter

value is acceptable, calculate the corresponding value of the function.

Obtained function value Y2, compare with Ymax.

If Y2>Ymax, then Ymax takes on value Y2 (Ymax=Y2), otherwise

Ymax retains its value, and after changing the cycle parameter, the

process is repeated.

All this can be written by mathematical dependence:

𝑌𝑚𝑎𝑥 = {
𝑌𝑖, 𝑖𝑓 𝑌𝑖 > 𝑌𝑚𝑎𝑥
𝑌𝑚𝑎𝑥, 𝑖𝑓 𝑌𝑖 ≤ 𝑌𝑚𝑎𝑥

where Yі – the current value of the function.

88

Exit the loop is achieved when the parameter reaches the upper

limit of the interval.

It should be noted that the solving such problems, it is not about

the minimum or maximum value of the function, but about the

minimum or maximum among its calculated values. This is because the

computer calculates the discrete values of the function at the

corresponding discrete values of the parameter, and the real minimum

or maximum may be between them (Fig. 4.11).

Fig. 4.11

It is possible to increase the accuracy of determination of the

extremum by reducing the step of changing the loop parameter.

For example (Fig. 4.12). Make the algorithm for finding
the maximum value of the function (Ymax)
if the parameter X changes from 0 to 4 with step h=0.5.

Also determine the value of the argument at which the maximum
is reached (Xmax), and what account will be among the calculated
values Ymax (m).

symbol 2 – input of variable а,b;

symbol 3 – assignment the initial value of the loop parameter X;

symbol 4 – calculating the first value of a function;

symbol 5 – variable and is assigned a value 1
symbol 6 – variable m assigned value i; variable Xmax assigned

the first argument value; variable Ymax assigned the first functions
value;

symbol 7 – organization of a loop by parameter X;

symbol 8 – calculating the next value of the function;

symbol 9 – increasing the value of the counter i for 1;

X

Y
Ymax

Ymin

МАХ

89

symbol 10 – comparing the next value of a function with Ymax.

If the next function value is greater than Ymax , then Ymax accepts this

value. Variable m assigned value i; variable Xmax привласнюється

поточне значення аргументу (symbol 11), otherwise Ymax saves its

value. The transition to calculation the next parameter X.

symbol 12 – output Ymax, Xmax, m

symbol 13 – exit from the algorithm.

13

Input а,b

X=0

Y=|a|*exp(b*x)

Ymax=Y

Xmax=X

m=i

1

2

3

4

5

6

X=0,4,0.

5

Fig. 4.12

Y=|a|*exp(b*x)

Y>Ymax

Ymax=Y

Xmax=X

m=i yes

Output

Ymax, Xmax, m

no

8

10

11

12

i=1

7

i=i+1
9

Start

End

90

Control questions and tasks

1. Define the concept of "loop", "cyclic calculating process".

2. Give a classification of loops by:

 the way of setting repetitions;

 the location of the loop exit condition;

 grade of nesting.

3. Define the concept of "loop parameter".

4. What steps should be taken to make a simple arithmetic loop?

5. Define the concept of "recurrent expression".

6. Give examples of recurrence relations.

7. Provide loop structures with precondition and postcondition.

8. Define the concept of "nested cyclic calculating process".

9. Specify principles for nested loop construction.

10. For the algorithm below, write down the terms of the tasks they are

accomplishing:

у=0

х=1;5

р=1

і=1, N

р=p*a/(x2+1)

y=y+3.2p

z=1

i=3;7

t=0

j=1, m

t=t+b/(i+2j)

z=z*at

91

11. For the algorithm below, write down the term of the task they are

accomplishing.

12. How determined the number of repetitions of calculating operators

in nested cyclic processes (give the formula)?

13. Is the depth of nesting of cyclical processes limited?

14. For what tasks are used nested cyclic processes?

15. For what purposes can recursive relations be used in nested cyclic

processes?

16. Give examples of tasks conditions that contain nested cyclic

calculating processes.

17. For the algorithm below, calculate the number of "y" values that

will be displayed.

18. Define the concept of "iterative cyclic calculating process".

19. Give the main differences between iterative and arithmetic loops.

20. When is the iteration loop completed and what should be provided?

21. What should be the numeric series for the iterative process of

finding its sum to coincide? Provide a diagram of the value of a row

element from its sequence number.

22. When the value of a row element is checked when the iteration

process completes, and when – module of this value?

Output

a,b,c,y

 b=3;9; 2

c=0;1.2;0.1

a=2;5;0.5

92

23. Provide an algorithm for calculating the value of a function Y,

which is the sum of the elements of an infinite number that matches:

24. Define the concept of "the largest" (МАХ) and "the smallest"

(МІN) the value of the function per segment.

25. What type of algorithm is used to find the MAX and MIN values

of a function?

26. What is a local minimum?

27. What is the global maximum?

28. Which function is called continuous?

29. * The cycles describe:

1) branching processes;

2) linear processes;

3) iterative processes;

4) regular processes.

30. Can a step in the regular cycle be negative?

1) yes, it can;

2) no, it can't;

3) it can, but only if it is an integer;

4) it depends on the BASIC version.

31. Can a step in a regular cycle be a fractional number?

1) yes, it can;

2) no, it can't;

3) it can, but only if it is a positive number;

4) it depends on the BASIC version.

32. *Cycles by location of the condition of leaving the loop are divided

into:

1) prerequisite loops;

2) fasting loops;

3) regular loops;

4) iterative loops;

5) simple loops;

6) nested loops.

93

33. *Regular loop is:

1) a loop with no calculated number of repetitions;

2) in which using arithmetic actions (+,-,*,/);

3) with a clearly specified number of repetitions;

4) in which the loop parameter takes only integer values;

5) with the estimated number of repetitions.

34. *Specify the correct recorded modifiers:

1) ; 2) ;

3) ; 4) ;

5) .

35. The results of the calculations are NOT:

1) Intermediate;

2) Result;

3) Input.

36. *Specify two known types of cycles:

1) with an unknown number of repetitions;

2) with a known number of repetitions;

3) with an unknown condition for exiting the cycle;

4) with an branched condition of exit from the cycle.

37. *Specify the types of cycles that you know of:

1) regular;

2) unconditional;

3) with the transconditional;

4) with the mezacondition;

94

5) with the precondition;

6) with the condition of fasting.

38. *The nesting loops are divided into:

1) prerequisite loops;

2) fasting loops;

3) simple loops;

4) nested loops;

5) regular loops;

6) iterative loops.

39. *Loops for the way repetitions are organized are divided into:

1) regular loops;

2) prerequisite loops;

3) fasting loops;

4) iterative loops;

5) nested loops.

40. A feature of the prerequisite cycle is the fact that:

1) actions in the loop body may not be performed any time;

2) actions in the loop body must be performed at least once;

3) actions in the loop body must be performed before printing;

4) all values in the loop must be calculated before the start.

41. A feature of the loop with the condition of fasting is the fact that:

1) actions in the loop body must be performed at least once;

2) actions in the loop body may not be performed any time;

3) actions in the loop body must be performed after data entry;

4) all values in the loop must be calculated after the end.

42. The number of repetitions in regular cycles may NOT be:

1) a predefined integer; 2) a predefined real number;

3) null; 4) negative (for example, if step = -1).

43. The step in regular cycles should NOT be:

1) variable; 2) constant; 3) arithmetic expression;

4) negative number; 5) positive number; 6) null;

7) fractional; 8) real number.

95

44. Specify how many times the loop body defined by the parameter x

will be executed?

1) 10; 2) 9; 3) never; 4) an infinite number of times (looping); 5) 1.

45. Specify how many times the loop body defined by the parameter x

will be executed?

1) 10; 2) 9; 3) never; 4) an infinite number of times (looping); 5) 1.

46. Specify how many times the loop body defined by the parameter x

will be executed?

1) 10; 2) 9; 3) never; 4) an infinite number of times (looping); 5) 1.

47. Specify how many times the loop body defined by the parameter x

will be executed?

1) 10; 2) 9; 3) never; 4) an infinite number of times (looping); 5) 1.

96

48. Specify how many times the loop body defined by the parameter x

will be executed?

1) 10; 2) 9; 3) never; 4) an infinite number of times (looping); 5) 1.

49. Specify how many times the loop body defined by the parameter x

will be executed?

1) 10; 2) 9; 3) never; 4) an infinite number of times (looping); 5) 1.

50. Specify how many times the loop body defined by the parameter x

will be executed?

1) 10; 2) 9; 3) never; 4) an infinite number of times (looping); 5) 1.

97

51. Specify an algorithm diagram that describes the task "tab function":

1) ; 2) ; 3) ; 4)

52. Specify an algorithm diagram that describes the task "finding sum,

product (factorial)":

1) ; 2) ; 3) ; 4)

53. If the nested loop is used in the calculation of:

1) sum; 2) product; 3) factorial; 4) no nested loops.

54. Specify the calculation described by the scheme:

1) 2) 3) 4) there is no such expression.

55. Specify the calculation described by:

98

1) 2) 3) 4) there is no such expression.

56. Specify the calculation described by:

1) 2) 3) 4) there is no such expression.

57. Specify cycles that are NOT regular:

1) 2) 3)

58. The number of repetitions in a nested loop is defined as:

1) the sum of the number of repetitions of external and internal loops;

2) the difference between the number of repetitions of the external and

the sum of the number of repetitions of the internal loop;

3) the product of the number of repetitions of external and internal

loops.

59. How many times does the loop body run?

1) 3; 2) 6; 3) 9; 4) ∞; 5) never (loop organized incorrectly).

99

60. How many times does the loop body run?

1) 1; 2) 4; 3) 2; 4) ∞; 5) never (loop organized incorrectly).

61. Specify tasks that use nested loops:

1) ; 2) ; 3)

62. Nested is a loop that contains:

1) one or more other loops;

2) one or more branches;

3) only the calculation of the sum or application.

63. How many times does the loop body run?

1) 4; 2) 1; 3) 2; 4) ∞; 5) never (loop organized incorrectly).

100

64. How many times does the loop body run?

1) 4; 2) 1; 3) 2; 4) ∞; 5) never (loop organized incorrectly).

65. Specify cycles that are NOT nested:

1) ; 2) ;

3) .

101

66. Specify properly organized schemas for loops:

1) ; 2) ; 3) .

67. Specify tasks that do NOT use nested loops:

1) ; 2) ;

3) .

68. Specify tasks that use nested loops:

1) 𝑦 = 𝑎 ∗ sin(𝑥 + 𝑎) 𝑖𝑓 𝑥𝜖[0; 1.7], ℎ𝑥 = 0.1, 𝑎 = 0.2;

2) 𝑦 = 𝑎 ∗ sin(𝑥 + 𝑎) 𝑖𝑓 𝑎 = 0.2 ;

3) 𝑦 = 𝑎 ∗ sin(𝑥 + 𝑎) 𝑖𝑓 𝑥𝜖[0; 1.7], ℎ𝑥 = 0.1, 𝑎𝜖[3; 7], ℎ𝑎 = 3 .

69. Specify tasks that use nested loops:

1) ; 2) ;

3) ; 3) .

70. Specify tasks that use nested loops:

1) ; 2) ;

102

3) ; 4) .

71. Specify tasks that do NOT use nested loops:

1) ; 2) ; 3) .

72. If the nested loop is used in the calculation of:

1) sum; 2) product; 3) factorial; 4) no nested loops.

73. If the nested loop is used in the calculation of:

1) sum; 2) product; 3) factorial; 4) no nested loops.

74. If the nested loop is used in the calculation of:

1) sum; 2) product; 3) factorial; 4) no nested loops.

103

75. Specify the snippet where the loop exit is incorrectly organized (the

task of calculating the sum of series ,

that converging with precision):

1) ; 2) ;

3) .

76. Specify tasks that use nested loops:

1) ; 2) ; 3) .

77. Specify tasks that use nested loops:

1) ; 2) ; 3) .

78. Is it possible to describe an iterative loop using a modifier?

1) no; 2) yes; 3) only if this is the loop with precondition.

104

79. If the nested loop is used in the calculation of:

1) sum; 2) product; 3) factorial; 4) no nested loops.

80. Specify the scheme for the calculation :

1) ; 2) ;

3) .

81. Specify the scheme for the calculation :

105

1) ; 2) ;

3) .

82. Where is the error in "zeroing"? (the task of calculating the sum of

series , that converging with precision)

1) ; 2) ; 3) .

83. *Iterative is called:

1) a cyclical process in which the number of repetitions is unknown in
advance;
2) a cyclic process in which the number of repetitions is known in
advance;
3) a recurring part of the program that uses the results of the previous
step at each step;

106

4) the loop that ends as a result of an external interference with a
program that contains that loop.

84. Specify the scheme for the calculation :

1) ; 2) ;

3) .

85. Where is the error in "zeroing"? (the task of calculating the sum of

series , that converging with precision)

1) ; 2) ; 3) .

107

86. Specify the scheme for the calculation :

1) ; 2) ;

3) .

108

UNIT 5. DESIGNING ARCHITECTURES

OF ARCHITECTURE PROCESSING

5.1. Concepts and main characteristics of the array

In the practice of engineering calculations, the solution of many

tasks involves the processing of large sets of homogeneous data, for

example, multiple results of measurements of the same physical

quantity. If all the elements of an object are of the same type, then the

variable denoted by these elements is homogeneous and can be

represented as an array.

Array – a set of similar elements, ordered by the numerical values

of the indices.

The name of the array indicate the all ordered set of elements in

general.

The element of the array is called the index variable. A list of

indexes is added to the name to indicate an individual element of the

array which allows for access to a particular item.

Index – constant, variable or expression. The index value must be

a positive integer (because it's a number), so it is always rounded down,

transformed and stored in this form.

Index list – ordered sequence of indices, separated by commas.

Each index has its own range of change, called the limit pair.

Index variables are handled according to the same rules as scalar

(simple) variables.

All elements of the same array not only have a common name, but

are usually placed in consecutive cells of computer memory.

The location of an element can be defined as one (one-

dimensional arrays) or multiple values (multidimensional arrays) of

indices.

The characteristics of the arrays are dimension and size.

The number of indices determines the dimension of the array.

The number of array elements determines the size of the array.

For example,

Ai; Z9; Sj+2; Sk-3 – elements of one-dimensional arrays;

Ai, j; Z9, j; S2*i, j+2 – elements of two-dimensional arrays.

109

Array processing algorithms have blocks for processing array

elements and relevant index values. Typically, these blocks are

components of cyclic algorithms. This is because the processing of any

element of an array is the same sequence of actions, and by organizing

a loop by the number of array elements, you can handle all the elements

using the same commands.

The characteristic of such algorithms – each repetition of loop

processing should attend the next item. Therefore, they are called

redirect loops – moving to the next element is carried out by increasing

the memory address (usually on 1).

In mathematics, one-dimensional tables are called vectors or

columns. For input, output and processing of one-dimensional arrays

are used simple loops. For example, X={xi}, i=1,5 – one-dimensional

array of 5 elements.

The two-dimensional table contains n*m elements,and each

element has two indexes. The first index shows the row number and the

second shows the column number at which the element is intersected.

In mathematics, two-dimensional tables are called matrices.

For example, A={aij}, i=1,n; j=1,m. If n=5 and m=4 then

A11, A12, A13, A14

A21, A22, A23, A34

. . .

A51, A52, A53, A54

For input, output and processing of two-dimensional arrays

typically used nested loops.

Working with any array consists of three stages:

 setting values of array elements;

 data processing according to the conditions of a specific task;

 output of calculation results.

5.2. Algorithms for processing one-dimensional arrays

Consider the implementation of input-output elements of a one-

dimensional array.

On Fig. 5.1 shows a diagram of the algorithm input values

one-dimensional array elements K(20) of the keyboard. The user enters the

array elements sequentially, starting with the index element i=1 (symbol 3).

On Fig. 5.2 shows a diagram of the algorithm input values of the array

110

elements. The procedure of input-output is implemented by a cyclic

algorithm.

Fig. 5.1 Fig. 5.2

On Fig. 5.1 і 5.2 arrays have a constant size of 20 elements.

For an array of any size, you must first enter the size of the array,

and then – the array elements (Fig. 5.3).

If multiple arrays are the same size, they can be entered in one

loop (Fig. 5.4).

Fig. 5.3 Fig. 5.4

Start

1

End

4

i=1,20
2

Input K(i)

3

Start

1

End

4

i=1,20
2

Output K(i)

3

Start
1

End
5

i=1,N
3

Output A(i),

В(i)

4

Input N

2

Start
1

End
5

i=1,N
3

Output X(i)

4

Input N

2

111

For the sake of brevity, the following representation is allowed:

symbols instead of 2-4 (Fig. 5.5) can be drawn:

Fig. 5.5

For example. Schemes of algorithms for calculating sums and

products of finite number of elements of an array are cyclic algorithms

in which the cycle parameter is the order number of the element – i.

The diagram in Fig. 5.6 implements the calculation of the sum of

the elements of the array K(20). The sum is accumulated in variable S

when the array is viewed sequentially. The initial state the amount of S,

is zero, set symbol 3.

The arithmetic mean of the SR elements of the array is determined

by the formula:

,

where S – the sum of the elements,

N – number of elements.

Symbol 6 calculates the SR value after determining the sum

of 20 array elements. The diagram in Fig. 5.7 implements the

calculation of the product of the elements of the array K (20), located

in pairs. It is similar to the previous one, except that the initial state of

the accumulator for the product P is equal to one.

For example, Generate an array of arbitrary numbers using the

random number generator RND, which is available in almost all

algorithmic languages. To obtain such numbers, it is only necessary to

specify the range [a; b], in which it is necessary to obtain the numbers

and the number of such numbers. Random number generator RND

generates real numbers in the range [0; 1], distributed by a evenly act.

The formula for obtaining a number in a given range looks like x = a

+(b - a)*RND.

Input N, X(i),

i=1, N

112

Fig. 5.6 Fig. 5.7

If we make the process of obtaining numbers X cyclical, then we

will be able to form an array X of a given size (Fig. 5.8).

Fig. 5.8

Start 1

P=P*K(i)

3

i=2,20,2

Output P

6

End
7

5

4

Start
1

3

End
8

SR=S/20

4

6

i=1,20,1

S=S+K(i)
5

Output S ,SR

7

Input К(i), i=1; 20

2

S=0 P=1

Input К(i), i=1; 20
2

4

Start

1

End
6

i=1, N
3

Input a, b, N

2

X(і)=a+(b–а)*RND

Output x(i)
5

113

For example, The algorithm shown in Fig. 5.9, allows the array

elements A(20) create two arrays X and Z.

Array X consists of negative array A, array Z – with elements

from key feature A(i) >12.

Sequential view of array elements A we find items that satisfy the

search criteria (symbols 5, 6). Symbols 9 and 10 array elements A,

recorded in the corresponding arrays. Serial number of the array

element X is given by a variable j, to array Z – by variable k. Before

writing the next element in each of the arrays, the values of the

corresponding variable characters 7, 8 are increased by 1. The last

values of the variables j, k will correspond to the total number of

elements of the arrays X and Z.

Fig. 5.9

1

j=0, k=0

i=1,20

A(i)<0

End

14

Z(k)=A(i)

k=k+1

X(j)=A(i)

j=j+1

7

6

9

yes

yes

8

4

Start

10

3

A(і)> 12

Input A(i), i=1, 20

Output X(j)
Output Z(k)

2

5

11

12

Output j, k
13

114

For example. Array X consisting of N numerical elements.

Develop a schema for finding the element's highest value (MAX

variable).

In the algorithm (Fig. 5.10) in finding the maximum element of

each element is compared with the variable MAX, which in block 3 is

assigned the value of any element (in the example – element 1). Symbol

6 the value of the variable MAX will replace, if the element X(i)>MAX.

After viewing all elements of the array, the value of the variable MAX

will be equal to the greatest value X(i) and will be displayed.

Fig. 5.10

Yes

Start

MAX=X(i)

MAX=X(1)
3

i=1,N,1

X(i)<=MAX

End

7

8

6

4

5

Input N; X(i), i=1; N
2

Output MAX

115

5.3. Algorithms for processing two-dimensional arrays

Procedures for input, processing and output of elements of two-

dimensional arrays are based on nested cyclic computing algorithms.

The procedure of input and output of elements of an array can occur

both on rows and on columns (swap parameters external and internal

loops).

On Fig. 5.11 the algorithm of matrix input is given X(M, N)

arbitrary size by rows.

On Fig. 5.12 the algorithm of matrix input is given Y(12, 6) by

columns.

Fig. 5.11 Fig. 5.12

Fig. 5.13 illustrates a brief entry of the matrix input procedure

X(M,N).

Fig. 5.13

Start

1

I=1; M
3

Input X(I,J)

5

Input M, N

2

J=1; N
4

Input X(I,J)

2

4

Start

1

3

I=1; 12

J=1; 6

J=1; N

I=1; M

Input M, N, X(i,j)

i=1.M; j=1,N

116

For example. A two-dimensional array is specified Х(k, k)

numeric values (k rows and k columns). Array Х(k,k) – square matrix.

Perform the following data processing in this array:

- determine the difference R between the product and the sum of

the elements of the array satisfying the condition X(i, j) > 10;

- determine the arithmetic mean of the elements in each row and

write them into a one-dimensional array Y(k);

- determine the number of negative elements in each column of

the array Х(k, k), place results in a one-dimensional array Z(k);

- determine the value of the maximum element (max) on the main

diagonal of the array Х(k, k)

The algorithm for solving the problem is given in Fig. 5.14.

Can be distinguish the basic patterns of construction algorithms

for processing two-dimensional arrays:

1. To handle elements in an array row, you must first open the row

modifier.

2. To handle elements in an array column, you must first open the

column modifier.

3. For processing elements in each row of the array:

 open the row modifier;

 set the initial value of the desired value;

 open the column modifier.

4. For processing elements in each column of the array:

 open the column modifier;

 set the initial value of the required value;

 open the row modifier.

Symbol 2 – input k – the size of the array Х.

Symbols 3-5 – loop input elements of the array Х(k,k) by rows.

Symbol 6 – assigning initial values of sum S=0 and product Р=1

elements that satisfy the condition X(i,j)>10.

Symbols 7-10 sum accumulation loop S and product Р. Symbol 9

checks whether the performance of the condition X(i,j)>10.

Symbols 11, 12 – calculating and outputting the difference value

R between the product Р and the sum S.

117

no

yes

Start

X(i,j)>10

1

2

3

4

5

6

7

8

9

10

A

Input k

i=1; k

j=1; k

Input X(i,j)

S=0, P=1

j=1; k

i=1; k

S=S+X(i,j),

P=P*X(i,j)

R=P-S

11

Fig. 5.14

118

Z(j)=Z(j)+1

A

X(i,j)<0

23

15

14

12

22

Input R

j=1; k

j=1; k

Y(і) = 0

i=1; k

Y(і)=Y(і)/k

Output Z(j)

19

B

Fig. 5.14 (continuance)

i=1; k

Output. Y(і)

Z(j) = 0

13

17

21

20

18

no

yes

Y(і)=Y(і)+X(і, j)

16

24

119

Fig. 5.14 (end)

Symbols 13-18 – calculating and outputting the values of the

arithmetic mean of each row in the array Х(k,k). Processing is done in

rows (parameter i in the external loop). Zeroing Y(i)=0 – symbol 14,

occurs after setting the row number. Accumulating the sum of elements

is due to the addition of value X(i,j) in each internal loop – symbol 16.

Calculation and output of arithmetic mean of row elements Y(i),

symbols 17, 18, occurs after processing of all row elements (exit from

the inner loop, symbol 15).

Symbols 19-24 – calculating and displaying the number of

negative elements in each column of the matrix Х(k,k). Processing is

done by columns (parameter j in the external loop). Zeroing the number

of negative elements Z(j)=0, symbol 20, occurs after the column

number is specified j by the symbol 19. Accumulating the number of

elements is due to the addition of 1 in each cycle if the condition

X(i,j)<0.

Symbols 25-29 – determine and output the value of the maximum

element on the main diagonal of the matrix. The initial value of the

B

X(і,і)>max

2730

i = 2; k

26

30

Output max

End

max = X(і,і)

28

max = X(1,1)

25

yes

no

29

120

maximum element is the value of the element Х(1,1). The comparison

of the values of the elements of the matrix with the current maximum

value occurs from the second element (i=2; k, symbol 26). Because the

elements of the main diagonal have the same indexes Х(i,i), then the

search for the maximum element occurs in a simple loop with one

parameter i.

5.4. Algorithms for sorting arrays for a given feature

Sorting an array – sorting elements in ascending or descending

order. Sorting algorithms vary in complexity and efficiency –

depending on the length of time of the array (Fig. 5.15).

Sorting by choice. Search for max element number. It replaces the

last element of the array, and the last element contains the maximum

element (swapped). Then part of the array is taken without the last

element (the last element has finally taken the place of the maximum

element). With this residue, the same is done as with the output array.

And so until the length of the last residue is equal to one (Fig. 5.16).

Fig. 5.15. Sorting by choice

J=1,I

A(J)>AMAX

I=N,1,-1

AMAX= A(J)
IMAX= J

так

AMAX= A(I)

P= A(I)
A(J)= A(I)

A(J)=P

P= A(IMAX)
A(IMAX)= A(I)

A(I)=P

121

Intuitive sorting. Adjacent elements are compared in pairs.

Fig. 5.16 Intuitive array sorting.

Each comparison is checked – if the previous element is greater

than the next, they are reversed. One passage contains (n-1)-to check.

Then the iteration is repeated: totally (n-1) iteration. Works slowly.

Bubble method. External loop – set the number of iterations;

internal loop – set the number of comparisons. Consistently compare

the i-th element (i=1,N) with the following, starting from i+1-th to the

end. If a smaller element is found, it is replaced by an i-th. As a result,

each iteration the smaller (“lighter”) are moved to the beginning of the

array – “go up like bubbles of air” (Fig. 5.17).

This method is worse than selection sort method, because the

exchange of values occurs every time the comparison condition is met,

however, it is effective when sorting an almost sorted array.

Improved bubble method. The sign of permutations is set to zero

(ordering indicator) – H=0. Adjacent elements of the array are

compared in pairs. At each comparison mades a check – if the previous

element is greater than the next, they are reversed, thus set H=1. When

all comparisons are made, the condition is checked H=1, і if it is done,

then pairwise comparisons are repeated (Fig. 5.18).

J=1,N-1

A(J) >=A(J+1)

I=1,N-1

P= A(J)
A(J)= A(J+1)

A(J+1)=P

так

122

Fig. 5.17. Bubble method

 Fig. 5.18 Improved bubble method

J=I+1,N

A(I) >=A(j)

I=1,N

P= A(J)
A(J)= A(I)

A(I)=P

так

A(I) >=A(I+1)

I=1,N-1

P= A(I)
A(I)= A(I+1)

A(I+1)=P

так

H=1

H=0

H=1

так

123

Control questions and tasks

1. Define the concept "Array".

2. What are the characteristics of an array?

3. What in mathematics is analogous to the concept of "one-

dimensional array"?

4. Expand the concept of "array size".

5. How are array elements stored in the computer's memory?

6. Expand the concept of "the dimension of the array".

7. What type of algorithm is used to enter and process array elements?

8. What is the key attribute for array elements?

9. Write an algorithm for input of elements of array A of arbitrary size A(M).

10. Write an algorithm for entering elements of an array D consisting

of 17 elements.

11. How to determine the size of a two-dimensional array that has "M"

rows and "N" columns?

12. What structure should the introduction of computer algorithms for

two-dimensional arrays?

13. How are two-dimensional array elements stored in the computer's

memory?

14. In what sequence is it necessary to organize cycles when

processing two-dimensional arrays by rows?

15. Define the concept: "array ordering", "key feature" when ordering

array elements.

16. Give a list of known algorithms for sorting arrays.

17. What type of algorithm is used to organize arrays?

Start
1

3

4

2

Start

1

2

3

124

18. Describe algorithms:

1) sorting "By choice"; 2) sorting by “Bubbles” method;

3) sorting with the improved "Bubbles" method.

19. The index value in parentheses after the array name defines the:

1) size of the array; 2) dimension of the array; 3) data type of the

array.

20. The number of indexes placed in parentheses after the array name

determines:

1) the data type of the array;

2) the number of rows in multidimensional arrays;

3) the number of columns in multidimensional arrays;

4) the dimension of the array.

21. What are the steps of processing arrays:

1) filling the array, array processing, outputting results;

2) description of the array, filling the array, outputting results;

3) input/output of array elements, filling the array, array processing,

outputting results.

22. An array is an ordered set of similar elements,

1) marked with one name;

2) distinguished by their names;

3) distinguished by their ordinal numbers (indexes);

4) intended for summation of elements.

23. Display the elements of the generated array Х:

125

1) ; 2) ; 3) .

24. The diagram describes the task:

1) filling of one-dimensional array A of arbitrary length;

2) filling in one-dimensional array A consisting of 20 numbers;

3) filling in two-dimensional array A consisting of 20 numbers;

4) no correct answer.

25. *An index in arrays can be defined by:

1) constant; 2) variable; 3) arithmetic expression;

4) a set of constants; 5) a set of variables.

26. The diagram describes the task of displaying:

1) elements having even ordinal numbers;

2) elements having odd ordinal numbers;

3) positive elements having even ordinal numbers;

4) positive elements having odd ordinal numbers;

5) negative elements having even ordinal numbers;

6) negative elements having odd sequence numbers;

7) no correct answer.

126

27. The scheme describes the task:

1) filling one-dimensional array A consisting of 20 numbers;

2) filling two-dimensional array A consisting of 20 numbers;

3) filling one-dimensional array A of arbitrary length;

4) no correct answer.

28. The scheme describes the task:

1) filling of one-dimensional array A of arbitrary length;

2) filling one-dimensional array A consisting of 20 numbers;

3) filling two-dimensional array A consisting of 20 numbers;

4) no correct answer.

29. The scheme describes the task of finding the sum:

1) the first 5 elements of the array;

2) each 5th element of the array;

3) the last 5 elements of the array;

4) array elements bigger than 5;

5) no correct answer.

127

30. The scheme describes the task of finding:

1) product of the first 5 elements of the array;

2) sum of the last 5 elements of the array;

3) product of array elements bigger than 5;

4) sum of array elements bigger than 5;

5) product of each 5 elements of the array.

31. The scheme describes the task of finding:

1) sum of array elements bigger than 5;

2) number of array elements bigger than 5;

3) product of array elements bigger than 5;

4) arithmetic mean of array elements bigger than 5.

32. The scheme describes the task of finding the sum of the elements

of the array:

1) with numbers 1,4,7,10,13;

2) with numbers 1,3,5,7,9;

3) with numbers 1,5,9,13,17;

4) with numbers 1,6,11,16,21;

5) with numbers 1,2,3,4,5.

128

33. The scheme describes the task:

1) search the minimum element in array A;

2) formation of array of elements lying in the range 2<=A(i)<=5;

3) search for the maximum element in array A;

4) search for elements larger than M in the entire array A.

34. The scheme describes the task:

1) search for the first maximal element in array A;

2) search for the last minimum element in array A;

3) search for the last maximum element in array A;

4) search for the first minimal element in array A.

35. The scheme describes the task of finding the sum of the array

elements:

1) with numbers 1,4,7,10,13 .

2) with numbers 1,3,5,7,9 .

3) with numbers 1,5,9,13,17 .

4) no correct answer.

129

36. The scheme describes the task of calculation and printing:

1) number of array elements bigger than 5;

2) number of array elements bigger than 5;

3) sum of array elements bigger than 5;

4) product of array elements bigger than 5;

5) no correct answer.

37. The size of the array А

1) 15; 2) 5; 3) 3; 4) 2; 5) 1.

38. Which array is formed of elements smaller than 5?

1) array Z; 2) array X; 3) array S; 4) array A; 5) no correct answer.

130

39. The scheme describes the task of finding the sum of array elements:

1) with numbers 1,4,7,10,13;

2) with numbers 1,3,5,7,9;

3) with numbers 1,6,11,16,21;

4) with numbers 1,5,9,13,17;

5) with numbers 1,2,3,4,5;

6) no correct answer.

40. Which array is formed of elements bigger than 5?

1) array Z; 2) array X; 3) array S; 4) array A; 5) no correct answer.

41. The dimension of the array А:

1) 15; 2) one-dimensional; 3) two-dimensional; 4) 5; 5) 3.

131

42. The scheme describes the task of finding the sum of array elements:

1) with numbers 1,4,7,10,13;

2) with numbers 1,3,5,7,9;

3) with numbers 1,5,9,13,17;

4) with numbers 1,2,3,4,5;

5) no correct answer.

43. Which array is formed of elements smaller than -5?

1) array Z; 2) array X; 3) array S; 4) array A; 5) no correct answer.

44. The size of the array А:

1) 5; 2) one-dimensional; 3) two-dimensional; 4) 2; 5) 3.

132

45. Which array is formed of elements belonging to the range

from -5 to 1, including boundary values?

1) array Z; 2) array X; 3) array S; 4) array A; 5) no correct answer.

46. The dimension of the array А

1) 5; 2) one-dimensional; 3) two-dimensional; 4) 2; 5) 3.

47. The index values in parentheses after the array name

are determined by:

1) the size of the array;

2) the dimension of the array;

3) the data type of the array.

48. The number of indices in parentheses after the array name

determines:

1) the dimension of the array;

2) the data type of the array;

3) the number of rows in multidimensional arrays;

4) the number of columns in multidimensional arrays.

133

49. *The index in the array can be determined by:

1) constant; 2) variable; 3) arithmetic expression;

4) a set of constants; 5) a set of variables.

50. What are the steps (sequence) of processing arrays?

1) filling the array, array processing, outputting results;

2) input/output elements of the array, filling the array, array

processing, outputting results;

3) description of the array, filling the array, outputting results.

51. The scheme describes the task of displaying the elements of the

array:

1) that are in even rows;

2) that are in odd rows;

3) that are in odd columns;

4) that are in even columns;

5) that are on the main diagonal;

6) of odd elements;

7) no correct answer.

52. The scheme describes the task of filling:

1) two-dimensional array A consisting of 20 numbers;

2) one-dimensional array A consisting of 20 numbers;

3) one-dimensional array A of arbitrary length;

4) two-dimensional array A of arbitrary length.

134

53. The scheme describes the task of displaying the negative elements

of the array:

1) that are in even rows;

2) that are in odd rows;

3) that are in odd columns;

4) that are in even columns;

5) that are on the main diagonal;

6) of odd elements;

7) no correct answer.

54. The scheme describes the task of finding the sum:

1) of the negative elements of an array lying in odd columns;

2) of positive elements of an array lying in odd columns;

3) of the negative elements of an array lying in even columns;

4) of the negative elements of an array lying in odd rows.

135

55. The scheme describes the task of finding the sum:

1) of the negative array elements in each even column;

2) of the negative array elements in each odd column;

3) of all the negative elements of an array in all even columns;

4) of all the negative elements of an array in all odd columns.

56. As a result of the scheme

 for the array

S=.

1) 5; 2) -5; 3) 15; 4) 0.

57. As a result of the scheme

 entering data into array A will be done by:

1)rows; 2)columns; 3)only in odd rows; 4)only in odd columns;

5)only on the main diagonal; 6)above the main diagonal;

7)below the main diagonal.

136

58. *Array – is an ordered set of similar elements

1) labeled with one name;

2) that are distinguished by their names;

3) that differ in their ordinal numbers; (indexes)

4) intended to sum elements;

59. As a result of the scheme S=.

 for the array

1) 13, 16

2) 16

3) 13

4) 13, 20, 16

137

BIBLIOGRAPHICAL LIST

1. Donald Ervin Knuth. The Art of Computer Programming 1.

Fundamental Algorithms (ART OF COMPUTER PROGRAMMING

VOLUME 1) / Addison Wesley, 7. Juli 1997. 650 p.

ISBN: 9780201896831.

2. Steven S Skiena. The Algorithm Design Manual 2nd ed.,

Springer, 14. November 2011, 730 p. ISBN: 978-1848000698.

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest.

Introduction to Algorithms /The MIT Press, 20. Dezember 2013,

Buchlänge 1292р. ISBN: 9780262033848.

4. Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom.

Database Systems / Pearson New International Edition: The Complete

Book: Pearson Education Limited, 17. Juli 2013. 1140 p.

ISBN: 129202447X.

5. Michael T. Goodrich, Roberto Tamassia, Michael H.

Goldwasser. Data Structures and Algorithms in Java: International

Student Version: Wiley, 12. August 2014. 720 p. ISBN: 1118808576.

6. Martin Fowler. Patterns of Enterprise Application

Architecture / Addison Wesley, 5. November 2002. 512 p.

ISBN: 0321127420.

7. Основи алгоритмізації базових обчислювальних процесів:

навч. посіб. / В. С. Меркулов, В. О. Гончаров, І. Г. Бізюк та ін.

Харків: ХарДАЗТ, 2007. 164 с. ISBN: 5-7763-0073-8.

138

TUTORIAL STUDENT’S BOOK

Bantyukov Sergiy,

Merkulov Victor,

Biziuk Іryna

etc.

COMPUTER SCIENCE

FUNDAMENTALS OF ALGORITHMIZATION

OF BASIC COMPUTATIONAL PROCESSES

Відповідальний за випуск Бізюк І. Г.

Редактор Еткало О. О.

Підписано до друку 09.10.19 р.

Формат паперу 60х84 1/16. Папір писальний.

Умовн.-друк. арк. 9,5. Тираж 100. Замовлення №

Видавець та виготовлювач Український державний університет

залізничного транспорту,

 61050, Харків-50, майдан Фейєрбаха, 7.

Свідоцтво суб’єкта видавничої справи ДК № 6100 від 21.03.2018 р.

http://kart.edu.ua/en/cecs/staff-cecs-2?id=3076
http://kart.edu.ua/en/cecs/staff-cecs-2?id=3075

