
І Н Ф О Р М А Ц І Й Н О – К Е Р У Ю Ч І С И С Т Е М И Н А З А Л І З Н И Ч Н О М У Т Р А Н С П О Р Т І

36 ІКСЗТ, 2013 №6

УДК 621.3

MIROSHNIK M.A., Doctor of Technical Sciences,
KOVALENKO M.A., graduate student (Ukrainian State Academy of Railway Transport)

Uses of programmable logic integrated circuits for implementations of
data encryption standard and its experimental linear cryptanalysis

This paper presents two original programmable logic integrated circuits (FPGA) implementations of a DES

encryption/decryption core. This implementations are the fastest ones known nowadays. In design, the plaintext, the key,
and the mode (encryption/decryption) can be changed with no dead cycles. The resulting design is deployed on eight
FPGAs and allows us to find (12 + 1) key bits in about 2.3 hours.
Key words: Cryptography, Data Encryption Standard (DES), linear cryptanalysis, FPGA, efficient implementations.

1 INTRODUCTION

The rapid growth of secure transmission is a critical
point nowadays. We have to exchange data securely at
very high data rates. Efficient solutions have to be
hardware implemented and flexible in order to evolve with
the permanent changes in norms. FPGA (Field
Programmable Gate Array) implementations of the triple-
Data Encryption Standard (triple-DES) efficiently meet
these constraints. Triple-DES is based on three consecutive
DES (without intermediate IP and IP-1 permutations). DES
is very well suited for FPGA solutions.

Some high-speed DES hardware implementations
have been published in the literature. These designs unroll
the 16 DES rounds and pipeline them. Patterson made a
key-dependent data path for encryption in an FPGA which
produces a bitstream of about 12 Gbps. Nevertheless, the
latency to change keys is tenth of milliseconds. A DES
implementation is also downloadable from FreelP [12] and
encrypts at 3.05 Gbps. Last known implementations were
announced by Xilinx company, including FPGA
implementations of a complete unrolled and pipelined DES
encryptor/decryptor. The 16-stage and 48-stage pipelined
ores could achieve data rates of, respectively, 8.4 Gbps and
2 Gbps (these results were obtained with VIRTEX E
technology). It also allowed changing the plaintext, the
key, and the encryption/decryption mode on a cycle-by-
cycle basis [1-3].

In this paper, author proposes new mathematical
descriptions to implement and optimize DES in an FPGA.
Author obtains two original designs. Both permit different
pipeline levels and encrypt with data rates of 14.5 Gbps
and 21.3 Gbps with, respectively, 21 and 37 cycles of
latency (these results were obtained with VIRTEX II
technology).

 M.A. Miroshnik, M.A. Kovalenko, 2013

In the second part, this paper deals with linear
cryptanalysis. Linear cryptanalysis is a cryptanalytic
technique that takes advantage of possible input-output
correlations over a cipher. By evaluating the linear
approximation for a sufficient number of plaintext /
ciphertext pairs, it is possible to recover some bits of the
key faster than an exhaustive search.

In 1993, Matsui [4], [5] proposed a known-plaintext
linear attack against a full DES. It typically requires 243
known plaintext/ciphertext pairs to recover (12 + 1) secret
key bits.

Recently, Knudsen and Mathiassen proposed three
chosen-plaintext attacks [1], the third one becoming the
best chosen-plaintext attack against DES. Their first attack,
which turns out to be less efficient from a theoretical point
of view, gives birth to a very fast hardware implementation
[6]. In fact, this attack requires only 212 chosen-
plaintext/ciphertext pairs, but recovers only seven key bits.
This attack allowed us [6] to recover the full key in less
than two hours with eight FPGAs used in parallel. We
denote it Knudsen's attack.

Although Matsui's linear cryptanalysis is the best
known-plaintext attack known against DES nowadays, this
attack still had a "theoretical" flavor, in the sense that very
few experimental applications have actually been
performed: A single known-plaintext experimentation for a
full DES cipher has been performed in [5] and, until
recently, remained the only practical test, to our
knowledge.

However, recent technological advances have made
the required computing power reachable, as is witnessed
by a set of 21 experiments for Matsui's approximation [2],
[3], using the idle time of 18 Intel Pentium III MMX,
capable of performing an attack in 4.32 days.

Based on our fast DES implementation, we propose an
FPGA implementation of Matsui's attack. It recovers 12 +
1 key bits in about 2.3 hours working with eight FPGAs.

In terms of computation time, Knudsen's attack is
better than Matsui's. Nevertheless, according to the number
of plaintext / ciphertext pairs needed and the number of

І Н Ф О Р М А Ц І Й Н О – К Е Р У Ю Ч І С И С Т Е М И Н А З А Л І З Н И Ч Н О М У Т Р А Н С П О Р Т І

37 ІКСЗТ, 2013 №6

secret key bits found, Matsui's attack gives better results.
In addition, Matsui's is a more realistic attack compared to
Knudsen's attack due to the known-plaintext context. Our
solution is very useful to perform practical tests, allowing a
comparison with theoretical estimations. We believe that
our implementations are the fastest implementations of
Matsui's linear cryptanalysis known so far.

2 THE DES ALGORITHM

In 1977, the Data Encryption Standard (DES)
algorithm was adopted as a Federal Information Processing
Standard for unclassified government communication. It is
still largely in use. DES [10-11] encrypts 64-bit blocks
with a 64-bit key, only 56 bits of which are used. The other
8 bits are parity bits for each byte. The algorithm has 16
rounds.

For the enciphering calculation, the plaintext is first
permuted by a fixed permutation IP. The result is next split
into the 32 left bits and the 32 right bits, respectively, L
and R. The R part is expanded to 48 bits with the E box by
doubling some R bits. Then, it performs a bitwise modulo

2 sum of the expanded R part and the 48-bit subkey K i.
The result of the XOR function is sent to eight nonlinear S-
boxes (S). Each of them has six inputs bits and four
outputs. The result is then permuted in the box P. Finally,
to obtain the R part of the next round, a new modulo 2 sum
is performed between the P output and the R part of
previous round (the L part of current round). In the last
round, no interchange of the 16-round R and L is
performed; the ciphertext is calculated by applying the
inverse of the initial permutation IP to the result of the 16th
round.

The secret key is expanded by the key schedule. The
key schedule calculation is first based on the 56-bit
permutation PC-1 whose output is split into 28-bit blocks
С and D. Then, С and D are left (or right for decryption)
shifted once or twice, depending on the index of the round
(for decryption, no right shift is performed in the first
round). The 48-bit subkey is obtained by a second
permutation, denoted PC-2. The DES algorithm is detailed
in Fig. 1

Fig. 1. The DES algorithm

І Н Ф О Р М А Ц І Й Н О – К Е Р У Ю Ч І С И С Т Е М И Н А З А Л І З Н И Ч Н О М У Т Р А Н С П О Р Т І

38 ІКСЗТ, 2013 №6

3 XILINX IMPLEMENTATIONS
The first proposed solution is a full unrolled and

pipelined DES implementation. It pipelines the data
through 16 stages, putting registers after each
enciphering/key round. This increases the data rate hugely,
but also the logic requirement compared to a sequential
design.

According to Fig. 4 and [14], the critical path through
the round is quite long. First, a multiplexer selects the

correct key bits depending on the encryptor/decryptor
mode. The selected key bits are XORed with the R part.
The resulting 6-bit fields are used to address the S-boxes
whose critical path is one LUT followed by two
multiplexer functions (F5 and F6). Finally, output bits
from the S-boxes are XORed with the L part. Fig. 2 details
the critical path.

Fig. 2. Сritical part of the DES design

The first proposed way to reduce this critical path is to
combine the F6 function with the final XOR operator. The
resulting 4-bit input logic function that fits in an LUT and
eliminates the F6 delay. Another improvement is to
decouple the key from the enciphering calculation. This is
done with a precomputation of the key schedule. So, the
multiplexer selecting the key can be removed from the
critical path, putting registers after this multiplexer.

Xilinx also proposes a second implementation. To
reach higher data rates, one inserts a pipelined stage,
respectively, after the key XOR and after F5 functions. It
results in a 3-stage pipeline per round and a 48-stage
pipeline ovd cipher.

Nevertheless, after checking and simulating their aj
able source code on the web, we found two errors, are they
forgot to put a 1-stage pipeline after the XOR beta the key
and R part. Actually, Xilinx implemented in 1-stage
pipeline, but sent the XOR directly between that and R part
into S-boxes, in place of the correspond registered value.
They also forgot to register the key before the XOR
function. Therefore, their critical pal quite a bit longer.
Finally, their solutions do not imply a correct DES that can
encrypt every cycle.

4 PROPOSED FPGA DESIGNS
To be speed efficient, we propose designs that unroll

the 16 DES rounds and pipeline them. In addition, we
implemented solutions that allow us to change the
plaintext, the key, and the encryption/decryption mode on
a cycle-by-cycle basis, with no dead cycle. As a result, we
can achieve very high data rates of encryption/decryption
with exactly the same interface as Xilinx.

All of our implementations are first based on new
mathematical representations of the DES algorithm.
Indeed, the original description of DES is not optimized
for FPGA implementation regarding the speed
performance and the number of LUTs used. An FPGA is
based on slice composed of two 4-bit LUTs (Look Up
Tables) and two 1-bit registers. Therefore, an optimal way
to reduce the LUTs used is to regroup all the logical
operations in order to obtain a minimum number of blocks
that take 4-bit inputs and give 1-bit outputs. In addition, we
have to note that permutation and expansion operations
(typically, P, E, IP, IP-1, PC-1, and PC-2) do not require
additional LUTs, but only wire crossings.

І Н Ф О Р М А Ц І Й Н О – К Е Р У Ю Ч І С И С Т Е М И Н А З А Л І З Н И Ч Н О М У Т Р А Н С П О Р Т І

39 ІКСЗТ, 2013 №6

4.1 First Solution
In [15], equivalent mathematical descriptions for DES

are proposed. Based on these transformations, we propose
new representations. First, we transform the round function
of the enciphering computation. This transformation has no
impact on the computed result of the round.

Fig. 3. Modified representation of one DES-round

Fig. 3 shows a modified round representation, where

we move the E box and the XOR operation. This involves
the definition of a new function denoted R (like reduction):

R=E-1;
∀x, R(E(x))=x; (1)
∃y|E(R(y))≠y.

Now, if we change all the enciphering parts of DES

(see Fig. 1) with this modified round function and if we
combine the E and XOR block with XOR block of the
previous round, we get the architecture detailed in Fig. 4.

In this new arrangement of the DES structure, the first
and last rounds are quite different from intermediate ones.
Therefore, we obtain an irregular architecture. In addition,
we increase the number of E and R blocks, which does not
alter the number of LUTs consumed. We also keep exactly
the same number of S-boxes, which is the expensive part
of the architecture. Finally, the number of modulo two sum
operators is slightly increased by 32 additional 2-bit XOR
operators. We can directly conclude that this design
consumes more logic than Xilinx implementations.

The left part of Fig. 5 illustrates how the critical path,
in our solution, is hugely decreased. We only keep one S-
box operator and one XOR function. With this solution, we
obtain a 1-stage pipeline per round. Due to the irregular
structure of our design, we have to add an additional stage
in the first round. To be speed efficient for implementation
constraints, we also put a 2-stage pipeline, respectively, in
the input and in the output. As mentioned in the figure,
first and last registers are packed into IOBs. Therefore, we
obtain a 21-stage pipeline.

Fig. 4. First modified representation of the DES algorithm

І Н Ф О Р М А Ц І Й Н О – К Е Р У Ю Ч І С И С Т Е М И Н А З А Л І З Н И Ч Н О М У Т Р А Н С П О Р Т І

40 ІКСЗТ, 2013 №6

Fig. 5. Pipelining our first solutions.

In the right part of Fig. 5, we put an extra pipelined
stage in ach round in order to limit the critical path to only
one S-box. As a consequence, we get a 37-stage pipelined
design.

4.2 Second Solution
Another solution is to move the R and XOR of the

right part of the round into the left XOR operator of the
previous round. As a result, we obtain the architecture
shown in Fig. 6.

As Fig. 6 underlines, we again obtain an irregular
architecture. First and last rounds are quite different from
intermediate rounds. We also keep exactly the same
number of S-boxes as our precedent design. But, we really
decrease the number of modulo two sum operators. We
spare 15 x 32 2-bit XOR and can directly conclude that this
design consumes less logic than Xilinx implementations.

Fig. 6 gives more details about the initial round of our
design.

5 LINEAR CRYPTANALYSIS
This section is a brief reminder of Matsui's linear

cryptanalysis [4], [5], [6] before explaining the resulting
VHDL design. Linear cryptanalysis is an attack based on
the existence of some unbalanced linear relationship
between inputs and outputs of a reduced-round version of
the target encryption scheme. In the case of DES, Matsui
used the relationship:

PL[15]⊕PH[7,18,24,29]⊕CL[7,18,24]=K1[22]⊕K3[22]

⊕K4[44]⊕K5[22]⊕K7[22]⊕K8[44]⊕K9[22]⊕
K11[22]⊕K12[44]⊕K13[22], (2)

where X[7,18,24,29] := X[7]⊕X[18]⊕X[24]⊕X[29]

Basically, this relationship means that the exclusive-or
of some well-chosen bits of the plaintext (namely, the
seventh, 18th, 24th, 29th bits of its high-order part) and
some well-chosen bits of the ciphertext are equal to the
exclusive-or of some well-chosen secret bits of the key
with probability different from ½.

І Н Ф О Р М А Ц І Й Н О – К Е Р У Ю Ч І С И С Т Е М И Н А З А Л І З Н И Ч Н О М У Т Р А Н С П О Р Т І

41 ІКСЗТ, 2013 №6

Fig. 6. Second modified representation of the DES
algorithm

We can easily calculate its dual, obtained by
reversing the expression

PL[7,18,24]⊕CL[15]⊕CH[7,18,24,29]=K2[22]⊕

K3[44]⊕K4[22]⊕K6[22]⊕K7[44]⊕K8[22]⊕K10[22]⊕
K11[44]⊕K12[22]⊕K14[22]. (3)

Those characteristics are the best linear

approximations of 14-round DES cipher. They are

satisfied with probability .

Expression (2) is then extended to the full 16 rounds
by adding two nonlinear round functions, respectively, in
the first and 16th rounds (we will leave the second
relationship aside in this discussion since it is the first
one's dual):

PL[7,18,24,29]⊕PH[15]⊕F1(PL,K1)[15]⊕
CH[7,18,24]F16(CL,K16)[7,18,24]=K2[22]⊕K4[22]⊕K5[44]
⊕K6[22]⊕K8[22]⊕K9[44]⊕K10[22]⊕K12[22]⊕K13[44]
⊕K14[22], (4)

where F1(PL,K1) denotes the first round function. This
relationship keeps exactly the same probability as (2). In
fact, only 6 bits of K1 (resp. K16) influence the value of
F1(PL,K1) [15] (resp. F16(CL,K16) [7,18,24]).

If we compute this equation for all 4,096 possibilities
of the key (K1 and K16), a large number of plaintexts,
knowing that only one of these 4,096 keys is correct, we
will find one significative probability corresponding to
the 12 correct key bits. The following algorithm
summarizes this idea.

Algorithm
1. For each candidate (K1

(i)|K16
(j)) (i = 1,2,.. .64,

j = 1,2, ...64) of (K1|K16), let T(I,j) be the number of
plaintexts such that the left side of the (4) is equal to
zero.

2. Let T(max i,max j) be the maximal value, T(min i,min j) the
minimal value of all T(I,j)s, and N the number of
plaintexts / ciphertexts.

If | T(max i,max j)-N/2|>|T(min i,min j)-N/2|, then adopt the
key candidate corresponding to T(max i,max j).

If | T(max i,max j)-N/2|<|T(min i,min j)-N/2|, then adopt the
key candidate corresponding to T(min i,min j).

An extra bit can be found thanks to (4). Indeed, 12
key bits of K1 and К16 were found thanks to the previous
algorithm and we can derive the value of

K2[22]⊕K4[22]⊕K5[44]⊕K6[22]⊕K8[22]⊕K9[44]
⊕K10[22]⊕K12[22]⊕K13[44]⊕K14[22]
from the same experiments. It is therefore possible to

recover 12 + 1 bits of the key. The same treatment can be
applied to the dual equation (4), thus yielding a total of 26
bits. The remaining 30 unknown key bits have to be
searched exhaustively.

Let us have a look at the success rate of Matsui's
attack. In [4], the following lemmas are proposed:

Lemma 1. Let N be the number of given random
plaintexts and p be the probability that (4) holds and
assume |p is sufficiently small. Then, the success rate of
the algorithm depends on the bits involved in the equation
and √N|p only.

Generally speaking, it is not easy to calculate
numerically the accurate probability above. However,
under a condition, it can be possible as follows: In this
case, we rewrite it for Matsui's attack on a full DES.

Lemma 2. With the same hypotheses as Lemma 1, let
q(i,j) be the probability that the following equation holds for
subkeys (K1

(i)|K16
(j)) and random variables X, Y:

F1(X,R1)[15]⊕F16(Y,R16)[7,18,24]=F1(X,K1

(j))[15]⊕
F16(Y,K16

(j))[7,18,24], (5)

where K1 and K16 are the correct subkeys.

І Н Ф О Р М А Ц І Й Н О – К Е Р У Ю Ч І С И С Т Е М И Н А З А Л І З Н И Ч Н О М У Т Р А Н С П О Р Т І

42 ІКСЗТ, 2013 №6

Then, if q(i,j) are independent, the success rate of the algorithm is

where the product is taken over all subkey candidstes except (K1|K16)

We compute (6) to show the theoretical success
probability of Matsui's 14-round attack. (Due to the large
(4,095) number of factors involved, the equation could not

be computed exactly; therefore, we used an
approximation.) Results are shown in Table 1.

Table 1
Success rate of Matsui's attack on a full DES

N 237 238 239 240 241 242 243 244 245 246

Success rate 0,1% 0,1% 0,3% 0,8% 2,5% 9,3% 31,9% 71,8% 95,3% 99,8%

For information, we give the complexities of Matsui's

linear attack on a full DES predicted by Knudsen.
Comparing with Table 2, our theoretical result seems to be
too pessimistic.

Table 2

Knudsen's value of the same attack
N 243 244 245

Success rate 32,5% 77,7% 99,4%

6 FPGA IMPLEMENTATION OF MATSUIS
ATTACK

As previously described, Matsui's linear cryptanalysis
allows us to find 26 key bits with about 243 known-
plaintexts. We propose an FPGA implementation of
Matsui's attack that permits recovering 12 + 1 key bits with
about 243 known-plaintexts. We did not use the second
relation to spare hardware resources and we decided to use
our second 21-stage pipelined DES, which is the fewer
resources consuming design. In order to increase speed
performances, we parallelized two of them so that we got a
data rate of two encryptions per cycle. We also modified
them in order to gain resources space: The key schedule
was simplified and the input and output registers were
removed.

Nevertheless, for a hardware implementation, the main
problem of this attack is the 212 counters needed to perform
the key guess. Knowing that about 24,000 LUTs available
on our FPGA, the implementation of 212 parallelized
counters is much too expensive to be realistic (at 65,000
LUTs). (We have to keep a sufficient bits size, say 16 bits,
for the counters to have an efficient and feasible
implementation.)

This section will briefly introduce how we implement
Matsui's linear cryptanalysis without 4,096 parallel
counters in one FPGA board, keeping our very fast data
throughput. We do it with 4,096 RAM-based counters.
(We configure all the RAMs to have 8-bit address and 16-
bit data.)

In practice, we need to implement 4,096 RAM based
counter values, with only 32 parallel access (with real and
writing operations; we use dual access RAMs). Therefore,
this operation can be performed in 128 clock cycles.

This is practically performed using a large
serial/parallel converter making the ciphertext bits
involved in Matsui’s linear approximation (4) available
during 128 cycles.

By choosing the plaintext bits involved in the linear
approximation (4) such that they are fixed during the same
128 clock cycles, we avoid the need of a serial/parallel
converter for the plaintext bits. We also avoid the use of
I0R operators between plaintext and ciphertext parts.
Therefore, we spare a lot of hardware resources. We just
need an n-delay shift register (SR block) to synchronize the
design.

To generate plaintext bits, we use an LFSR of 57 bits
and a 6-bit counter (the remaining bit is used for the two
DES parallelization). This counter controls the PL part used
to calculate F1[15], varying every 128 cycles. Therefore,
we obtain 128 successive cycles where the PL part of
F1(PL,K1)[15] is constant.

Knowing 256 parallelized results of
PL[7,18,24,29]⊕PH[15]⊕CH[7,18,24]⊕F16(CL,K16)[7,18,24],
we have to count the number of bits equal to 0 and subtract
128, thanks to the previous comment (we only store the
bias). We obtain 9-bit result, called bias in Fig. 6.

І Н Ф О Р М А Ц І Й Н О – К Е Р У Ю Ч І С И С Т Е М И Н А З А Л І З Н И Ч Н О М У Т Р А Н С П О Р Т І

43 ІКСЗТ, 2013 №6

Depending on the 32 parallelized values of F1(PL,K1+i)
[15], we have to carry out a subtraction or an addition
between the 32 RAM values stored (in the correct address)
and the bias value. (We have i = from 0 to 31 and К1 equal
to 0 or 1.)

Therefore, we get one Matsui's attack implementation
that allows us to recover 12 + 1 secret key bits. Our
cryptanalysis design is based on a sequentialized access of
4,096 counters, without altering the encryption rate of two
DES per cycle. To analyze our experiments, the 4,096
RAMs stored results are sent to the PC when one of them
exceeds the 16-bit RAM data size. In addition, the PC can
send the secret key to the FPGA board. This allows us to
perform very practical tests.

7 EXPERIMENTAL RESULTS

In this section, we give the results we got running
Matsui's attack on eight Xilinx FPGAs (VIRTEX1000
bg560-4). We carried out the experiments at a work
frequency = 66.6 MHz (=226) (Because of the FPGA heat
running at 66 MHz, we do not carry experiments at higher
frequency. It is why we use our second 21-stage solution,
which is the less resource consuming design.). Therefore,
we are able to compute 2x226 equations per second. Using
eight FPGA boards, 243 evaluations take less than 2.3
hours.

We performed tests with 71 different keys. Table 7
summarizes the experimental success rate of the attack for
various amounts N of chosen-plaintext/ciphertext pairs.

These experimental results suggest that Matsui's
theoretical analysis is quite good (see Tables 5 and 6).
Indeed, our results are very close to mathematical
estimations.

CONCLUSION

This paper deals with two new ideas for FPGA
implementations of DES leading to four improved practical
appropriate implementations. All of them are very efficient
in terms of speed and/or resources needed. Then, this paper
presents the first known FPGA implementation of Matsui's
linear cryptanalysis. The resulting attack is capable of
finding a 13-bit key in less than 2.3 hours, using eight
FPGA boards. In addition, it is worth noting that, with the
new Xilinx FPGA (Xilinx VIRTEX-II XC2V8000), we
would be able to carry out the same attack in about 1 hour,
using only one FPGA board. Therefore, in some
applications, FPGAs can be used as powerful
cryptographic calculation tools.

REFERENCES
1. L.R. Knudsen and J.E. Mathiassen, "A Chosen-

Plaintext Linear Attack on DES” Proc. Int'l Symp.
Foundations of Software Eng. (FSE '00), B. Schneier,
ed., pp. 262-272, 2000.

2. P. Junod, "Linear Cryptanalysis of DES," Master's
thesis, Swiss Inst, of Technology, 2000.

3. P. Junod, "On the Complexity of Matsui's Attack,"
Proc. ACM Symp. Applied Computing (SAC '01), pp.
216-230, 2001.

4. M. Matsui, "Linear Cryptanalysis Method for DES
Cipher," Proc. Advances in Cryptology – EuroCrypt
'93, T. Helleseth, ed., pp. 386-397, 1993.

5. M. Matsui, "The First Experimental Cryptanalysis of
the Data Encryption Standard," Y. Desmedt, ed., Proc.
Advances in Cryptology – Crypto '94, pp. 1-11, 1994.

6. F. Koeune, G. Rouvroy, F.-X. Standaert, J.-J.
Quisquater, J.-P. David, and J.-D. Legat, "An FPGA
Implementation of the Linear Cryptanalysis," Proc.
In'tl Conf. Field Programmable Logic and
Applications (FPL 4)2), M. Glesner, P. Zipf, M.
Renovell, eds., pp. 845-853, 2002.

7. J.M. Rabaey, Digital Integrated Circuits. Prentice
Hall, 1996.

8. Xilinx, "Virtex 2.5V Field Programmable Gate Arrays
Data Sheet," http://www.xilinx.com, 2002.

9. Xilinx, V. Pasham, and S. Trimberger, "High-Speed
DES and Triple DES Encryptor / Decryptor,"
http://www.xilinx.com/xapp/xapp270.pdf, Aug. 2001.

10. B. Schneier, Applied Cryptography, second ed. John
Wiley & Sons, 1996.

11. Nat'l Bureau of Standards, FIPS PUB 46, The Data
Encryption Standard, US Dept. of Commerce, Jan.
1977.

12. FreelP, http://www.free-ip.com/DES/index.html,
2000.

13. C. Patterson, "High Performance DES Encryption in
Virtex FPGAs Using Jbits," Proc. IEEE Symp. Field-
Programmable Custom Computng Machines (FCCM
VI), 2000.

14. S. Trimberger, R. Pang, and A. Singh, "A 12 Gbps
DES Encryptor/ Decryptor Core in an FPGA," Proc.
Cryptographic Hardware and Embedded Systems
(CHES '00), pp. 156-163, 2000.

15. M. Davio, Y. Desmedt, M. Fossprez, R. Govaerts, J.
Hulsbosch, P. Neutjens, P. Piret, J.J. Quisquater, J.
Vandewalle, and P. Wouters, "Analytical
Characteristics of the DES," Proc. Advances in
Cryptology – Crypto '83, D. Chaum, ed., pp. 171-202,
1983.

І Н Ф О Р М А Ц І Й Н О – К Е Р У Ю Ч І С И С Т Е М И Н А З А Л І З Н И Ч Н О М У Т Р А Н С П О Р Т І

44 ІКСЗТ, 2013 №6

Мирошник М.А., Коваленко М.А. Использование
ПЛИС для реализаций стандарта шифрования
данных. В настоящей статье представлены две
оригинальные реализации ПЛИС DES
шифрования / дешифрования. Эта реализация
являются самой быстродействующей в настоящее
время. В схеме текст, ключ и режим (шифрование
(кодирование) / расшифровка (декодирование)) могут
быть изменены без пассивных циклов.
Результирующая схема развернута на восемь и ПЛИС
позволяет найти (12 + 1) битов ключа за 2,3 часов.
Ключевые слова: криптография, стандарт
шифрования данных, линейный криптоанализ, FPGA,
эффективные реализации.

–––––––––––––––––––––––––––––––––––

Мірошник М.А., Коваленко М.А. Використання
ПЛІС для реалізацій стандарту шифрування даних.
У цій статті представлені дві оригінальні реалізації
ПЛІС DES шифрування / дешифрування. Ця реалізація
є самою швидкодіючою в даний час. У схемі текст,
ключ і режим (шифрування (кодування) / розшифровка
(декодування)) можуть бути змінені без пасивних
циклів. Результуюча схема розгорнута на вісім і ПЛІС
дозволяє знайти (12 + 1) бітів ключа за 2,3 годин.
Ключові слова: криптографія, стандарт шифрування
даних, лінійний криптоаналіз, FPGA, ефективні
реалізації.

Рецензент д.т.н., профессор, профессор кафедры СКС
Листровой С.В. (УкрГАЖТ)

Поступила 13.12.2013г.

