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This paper presents two original programmable logic integrated circuits (FPGA) implementations of a DES 

encryption/decryption core. This implementations are the fastest ones known nowadays. In design, the plaintext, the key, 
and the mode (encryption/decryption) can be changed with no dead cycles. The resulting design is deployed on eight 
FPGAs and allows us to find (12 + 1) key bits in about 2.3 hours.  
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1 INTRODUCTION 

The rapid growth of secure transmission is a critical 
point nowadays. We have to exchange data securely at 
very high data rates. Efficient solutions have to be 
hardware implemented and flexible in order to evolve with 
the permanent changes in norms. FPGA (Field 
Programmable Gate Array) implementations of the triple-
Data Encryption Standard (triple-DES) efficiently meet 
these constraints. Triple-DES is based on three consecutive 
DES (without intermediate IP and IP-1 permutations). DES 
is very well suited for FPGA solutions. 

Some high-speed DES hardware implementations 
have been published in the literature. These designs unroll 
the 16 DES rounds and pipeline them. Patterson made a 
key-dependent data path for encryption in an FPGA which 
produces a bitstream of about 12 Gbps. Nevertheless, the 
latency to change keys is tenth of milliseconds. A DES 
implementation is also downloadable from FreelP [12] and 
encrypts at 3.05 Gbps. Last known implementations were 
announced by Xilinx company, including FPGA 
implementations of a complete unrolled and pipelined DES 
encryptor/decryptor. The 16-stage and 48-stage pipelined 
ores could achieve data rates of, respectively, 8.4 Gbps and 
2 Gbps (these results were obtained with VIRTEX E 
technology). It also allowed changing the plaintext, the 
key, and the encryption/decryption mode on a cycle-by-
cycle basis [1-3]. 

In this paper, author proposes new mathematical 
descriptions to implement and optimize DES in an FPGA. 
Author obtains two original designs. Both permit different 
pipeline levels and encrypt with data rates of 14.5 Gbps 
and 21.3 Gbps with, respectively, 21 and 37 cycles of 
latency (these results were obtained with VIRTEX II 
technology). 
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In the second part, this paper deals with linear 
cryptanalysis. Linear cryptanalysis is a cryptanalytic 
technique that takes advantage of possible input-output 
correlations over a cipher. By evaluating the linear 
approximation for a sufficient number of plaintext / 
ciphertext pairs, it is possible to recover some bits of the 
key faster than an exhaustive search. 

In 1993, Matsui [4], [5] proposed a known-plaintext 
linear attack against a full DES. It typically requires 243 
known plaintext/ciphertext pairs to recover (12 + 1) secret 
key bits.  

Recently, Knudsen and Mathiassen proposed three 
chosen-plaintext attacks [1], the third one becoming the 
best chosen-plaintext attack against DES. Their first attack, 
which turns out to be less efficient from a theoretical point 
of view, gives birth to a very fast hardware implementation 
[6]. In fact, this attack requires only 212 chosen-
plaintext/ciphertext pairs, but recovers only seven key bits. 
This attack allowed us [6] to recover the full key in less 
than two hours with eight FPGAs used in parallel. We 
denote it Knudsen's attack. 

Although Matsui's linear cryptanalysis is the best 
known-plaintext attack known against DES nowadays, this 
attack still had a "theoretical" flavor, in the sense that very 
few experimental applications have actually been 
performed: A single known-plaintext experimentation for a 
full DES cipher has been performed in [5] and, until 
recently, remained the only practical test, to our 
knowledge. 

However, recent technological advances have made 
the required computing power reachable, as is witnessed 
by a set of 21 experiments for Matsui's approximation [2], 
[3], using the idle time of 18 Intel Pentium III MMX, 
capable of performing an attack in 4.32 days. 

Based on our fast DES implementation, we propose an 
FPGA implementation of Matsui's attack. It recovers 12 + 
1 key bits in about 2.3 hours working with eight FPGAs.  

In terms of computation time, Knudsen's attack is 
better than Matsui's. Nevertheless, according to the number 
of plaintext / ciphertext pairs needed and the number of 
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secret key bits found, Matsui's attack gives better results. 
In addition, Matsui's is a more realistic attack compared to 
Knudsen's attack due to the known-plaintext context. Our 
solution is very useful to perform practical tests, allowing a 
comparison with theoretical estimations. We believe that 
our implementations are the fastest implementations of 
Matsui's linear cryptanalysis known so far. 

 
2 THE DES ALGORITHM 

In 1977, the Data Encryption Standard (DES) 
algorithm was adopted as a Federal Information Processing 
Standard for unclassified government communication. It is 
still largely in use. DES [10-11] encrypts 64-bit blocks 
with a 64-bit key, only 56 bits of which are used. The other 
8 bits are parity bits for each byte. The algorithm has 16 
rounds. 

For the enciphering calculation, the plaintext is first 
permuted by a fixed permutation IP. The result is next split 
into the 32 left bits and the 32 right bits, respectively, L 
and R. The R part is expanded to 48 bits with the E box by 
doubling some R bits. Then, it performs a bitwise modulo 

2 sum of the expanded R part and the 48-bit subkey K i. 
The result of the XOR function is sent to eight nonlinear S-
boxes (S). Each of them has six inputs bits and four 
outputs. The result is then permuted in the box P. Finally, 
to obtain the R part of the next round, a new modulo 2 sum 
is performed between the P output and the R part of 
previous round (the L part of current round). In the last 
round, no interchange of the 16-round R and L is 
performed; the ciphertext is calculated by applying the 
inverse of the initial permutation IP to the result of the 16th 
round. 

The secret key is expanded by the key schedule. The 
key schedule calculation is first based on the 56-bit 
permutation PC-1 whose output is split into 28-bit blocks 
С and D. Then, С and D are left (or right for decryption) 
shifted once or twice, depending on the index of the round 
(for decryption, no right shift is performed in the first 
round). The 48-bit subkey is obtained by a second 
permutation, denoted PC-2. The DES algorithm is detailed 
in Fig. 1 

 

Fig. 1. The DES algorithm 
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3 XILINX IMPLEMENTATIONS 
The first proposed solution is a full unrolled and 

pipelined DES implementation. It pipelines the data 
through 16 stages, putting registers after each 
enciphering/key round. This increases the data rate hugely, 
but also the logic requirement compared to a sequential 
design. 

According to Fig. 4 and [14], the critical path through 
the round is quite long. First, a multiplexer selects the 

correct key bits depending on the encryptor/decryptor 
mode. The selected key bits are XORed with the R part. 
The resulting 6-bit fields are used to address the S-boxes 
whose critical path is one LUT followed by two 
multiplexer functions (F5 and F6). Finally, output bits 
from the S-boxes are XORed with the L part. Fig. 2 details 
the critical path. 
 

 

 

 

Fig. 2. Сritical part of the DES design 

 

The first proposed way to reduce this critical path is to 
combine the F6 function with the final XOR operator. The 
resulting 4-bit input logic function that fits in an LUT and 
eliminates the F6 delay. Another improvement is to 
decouple the key from the enciphering calculation. This is 
done with a precomputation of the key schedule. So, the 
multiplexer selecting the key can be removed from the 
critical path, putting registers after this multiplexer. 

Xilinx also proposes a second implementation. To 
reach higher data rates, one inserts a pipelined stage, 
respectively, after the key XOR and after F5 functions. It 
results in a 3-stage pipeline per round and a 48-stage 
pipeline ovd cipher. 

Nevertheless, after checking and simulating their aj 
able source code on the web, we found two errors, are they 
forgot to put a 1-stage pipeline after the XOR beta the key 
and R part. Actually, Xilinx implemented in 1-stage 
pipeline, but sent the XOR directly between that and R part 
into S-boxes, in place of the correspond registered value. 
They also forgot to register the key before the XOR 
function. Therefore, their critical pal quite a bit longer. 
Finally, their solutions do not imply a correct DES that can 
encrypt every cycle. 

4 PROPOSED FPGA DESIGNS 
To be speed efficient, we propose designs that unroll 

the 16 DES rounds and pipeline them. In addition, we 
implemented solutions that allow us to change the 
plaintext, the key, and the encryption/decryption mode on 
a cycle-by-cycle basis, with no dead cycle. As a result, we 
can achieve very high data rates of encryption/decryption 
with exactly the same interface as Xilinx. 

All of our implementations are first based on new 
mathematical representations of the DES algorithm. 
Indeed, the original description of DES is not optimized 
for FPGA implementation regarding the speed 
performance and the number of LUTs used. An FPGA is 
based on slice composed of two 4-bit LUTs (Look Up 
Tables) and two 1-bit registers. Therefore, an optimal way 
to reduce the LUTs used is to regroup all the logical 
operations in order to obtain a minimum number of blocks 
that take 4-bit inputs and give 1-bit outputs. In addition, we 
have to note that permutation and expansion operations 
(typically, P, E, IP, IP-1, PC-1, and PC-2) do not require 
additional LUTs, but only wire crossings.  
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4.1 First Solution 
In [15], equivalent mathematical descriptions for DES 

are proposed. Based on these transformations, we propose 
new representations. First, we transform the round function 
of the enciphering computation. This transformation has no 
impact on the computed result of the round. 

 

 

Fig. 3. Modified representation of one DES-round 

 
Fig. 3 shows a modified round representation, where 

we move the E box and the XOR operation. This involves 
the definition of a new function denoted R (like reduction): 

 
R=E-1; 
∀x, R(E(x))=x;  (1) 
∃y|E(R(y))≠y. 

 
Now, if we change all the enciphering parts of DES 

(see Fig. 1) with this modified round function and if we 
combine the E and XOR block with XOR block of the 
previous round, we get the architecture detailed in Fig. 4. 

In this new arrangement of the DES structure, the first 
and last rounds are quite different from intermediate ones. 
Therefore, we obtain an irregular architecture. In addition, 
we increase the number of E and R blocks, which does not 
alter the number of LUTs consumed. We also keep exactly 
the same number of S-boxes, which is the expensive part 
of the architecture. Finally, the number of modulo two sum 
operators is slightly increased by 32 additional 2-bit XOR 
operators. We can directly conclude that this design 
consumes more logic than Xilinx implementations. 

The left part of Fig. 5 illustrates how the critical path, 
in our solution, is hugely decreased. We only keep one S-
box operator and one XOR function. With this solution, we 
obtain a 1-stage pipeline per round. Due to the irregular 
structure of our design, we have to add an additional stage 
in the first round. To be speed efficient for implementation 
constraints, we also put a 2-stage pipeline, respectively, in 
the input and in the output. As mentioned in the figure, 
first and last registers are packed into IOBs. Therefore, we 
obtain a 21-stage pipeline. 

 
 

Fig. 4. First modified representation of the DES algorithm 
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Fig. 5. Pipelining our first solutions. 

 

In the right part of Fig. 5, we put an extra pipelined 
stage in ach round in order to limit the critical path to only 
one S-box. As a consequence, we get a 37-stage pipelined 
design. 

 
4.2 Second Solution 
Another solution is to move the R and XOR of the 

right part of the round into the left XOR operator of the 
previous round. As a result, we obtain the architecture 
shown in Fig. 6. 

As Fig. 6 underlines, we again obtain an irregular 
architecture. First and last rounds are quite different from 
intermediate rounds. We also keep exactly the same 
number of S-boxes as our precedent design. But, we really 
decrease the number of modulo two sum operators. We 
spare 15 x 32 2-bit XOR and can directly conclude that this 
design consumes less logic than Xilinx implementations. 

Fig. 6 gives more details about the initial round of our 
design. 

 
 

5 LINEAR CRYPTANALYSIS  
This section is a brief reminder of Matsui's linear 

cryptanalysis [4], [5], [6] before explaining the resulting 
VHDL design. Linear cryptanalysis is an attack based on 
the existence of some unbalanced linear relationship 
between inputs and outputs of a reduced-round version of 
the target encryption scheme. In the case of DES, Matsui 
used the relationship: 

 
PL[15]⊕PH[7,18,24,29]⊕CL[7,18,24]=K1[22]⊕K3[22]

⊕K4[44]⊕K5[22]⊕K7[22]⊕K8[44]⊕K9[22]⊕ 
K11[22]⊕K12[44]⊕K13[22], (2) 

 
where X[7,18,24,29] := X[7]⊕X[18]⊕X[24]⊕X[29] 

Basically, this relationship means that the exclusive-or 
of some well-chosen bits of the plaintext (namely, the 
seventh, 18th, 24th, 29th bits of its high-order part) and 
some well-chosen bits of the ciphertext are equal to the 
exclusive-or of some well-chosen secret bits of the key 
with probability different from ½. 
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Fig. 6. Second modified representation of the DES 
algorithm 

We can easily calculate its dual, obtained by 
reversing the expression 

 
PL[7,18,24]⊕CL[15]⊕CH[7,18,24,29]=K2[22]⊕ 

K3[44]⊕K4[22]⊕K6[22]⊕K7[44]⊕K8[22]⊕K10[22]⊕ 
K11[44]⊕K12[22]⊕K14[22]. (3) 

 
Those characteristics are the best linear 

approximations of 14-round DES cipher. They are 

satisfied with probability . 

Expression (2) is then extended to the full 16 rounds 
by adding two nonlinear round functions, respectively, in 
the first and 16th rounds (we will leave the second 
relationship aside in this discussion since it is the first 
one's dual): 

PL[7,18,24,29]⊕PH[15]⊕F1(PL,K1)[15]⊕ 
CH[7,18,24]F16(CL,K16)[7,18,24]=K2[22]⊕K4[22]⊕K5[44]
⊕K6[22]⊕K8[22]⊕K9[44]⊕K10[22]⊕K12[22]⊕K13[44] 
⊕K14[22], (4) 

 
where F1(PL,K1) denotes the first round function. This 
relationship keeps exactly the same probability as (2). In 
fact, only 6 bits of K1 (resp. K16) influence the value of 
F1(PL,K1) [15] (resp. F16(CL,K16) [7,18,24]). 

If we compute this equation for all 4,096 possibilities 
of the key (K1 and K16), a large number of plaintexts, 
knowing that only one of these 4,096 keys is correct, we 
will find one significative probability corresponding to 
the 12 correct key bits. The following algorithm 
summarizes this idea. 

Algorithm 
1. For each candidate (K1

(i)|K16
(j)) (i = 1,2,.. .64,  

j = 1,2, ...64) of (K1|K16), let T(I,j) be the number of 
plaintexts such that the left side of the (4) is equal to 
zero. 

2. Let T(max i,max j) be the maximal value, T(min i,min j) the 
minimal value of all T(I,j)s, and N the number of 
plaintexts / ciphertexts. 

If | T(max i,max j)-N/2|>|T(min i,min j)-N/2|, then adopt the 
key candidate corresponding to T(max i,max j). 

If | T(max i,max j)-N/2|<|T(min i,min j)-N/2|, then adopt the 
key candidate corresponding to T(min i,min j). 

An extra bit can be found thanks to (4). Indeed, 12 
key bits of K1 and К16 were found thanks to the previous 
algorithm and we can derive the value of 

K2[22]⊕K4[22]⊕K5[44]⊕K6[22]⊕K8[22]⊕K9[44] 
⊕K10[22]⊕K12[22]⊕K13[44]⊕K14[22] 
from the same experiments. It is therefore possible to 

recover 12 + 1 bits of the key. The same treatment can be 
applied to the dual equation (4), thus yielding a total of 26 
bits. The remaining 30 unknown key bits have to be 
searched exhaustively. 

Let us have a look at the success rate of Matsui's 
attack. In [4], the following lemmas are proposed: 

Lemma 1. Let N be the number of given random 
plaintexts and p be the probability that (4) holds and 
assume |p is sufficiently small. Then, the success rate of 
the algorithm depends on the bits involved in the equation 
and √N|p only. 

Generally speaking, it is not easy to calculate 
numerically the accurate probability above. However, 
under a condition, it can be possible as follows: In this 
case, we rewrite it for Matsui's attack on a full DES. 

Lemma 2. With the same hypotheses as Lemma 1, let 
q(i,j) be the probability that the following equation holds for 
subkeys (K1

(i)|K16
(j)) and random variables X, Y: 

 
F1(X,R1)[15]⊕F16(Y,R16)[7,18,24]=F1(X,K1

(j))[15]⊕ 
F16(Y,K16

(j))[7,18,24], (5) 
 

where K1 and K16 are the correct subkeys. 
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Then, if q(i,j) are independent, the success rate of the algorithm is 
 

 

where the product is taken over all subkey candidstes except (K1|K16) 

We compute (6) to show the theoretical success 
probability of Matsui's 14-round attack. (Due to the large 
(4,095) number of factors involved, the equation could not 

be computed exactly; therefore, we used an 
approximation.) Results are shown in Table 1. 

 
 

Table 1 
Success rate of Matsui's attack on a full DES 

N 237 238 239 240 241 242 243 244 245 246 

Success rate 0,1% 0,1% 0,3% 0,8% 2,5% 9,3% 31,9% 71,8% 95,3% 99,8% 

 
For information, we give the complexities of Matsui's 

linear attack on a full DES predicted by Knudsen. 
Comparing with Table 2, our theoretical result seems to be 
too pessimistic. 

 
Table 2 

Knudsen's value of the same attack 
N 243 244 245 

Success rate 32,5% 77,7% 99,4% 
 

6 FPGA IMPLEMENTATION OF MATSUIS 
ATTACK 

As previously described, Matsui's linear cryptanalysis 
allows us to find 26 key bits with about 243 known-
plaintexts. We propose an FPGA implementation of 
Matsui's attack that permits recovering 12 + 1 key bits with 
about 243 known-plaintexts. We did not use the second 
relation to spare hardware resources and we decided to use 
our second 21-stage pipelined DES, which is the fewer 
resources consuming design. In order to increase speed 
performances, we parallelized two of them so that we got a 
data rate of two encryptions per cycle. We also modified 
them in order to gain resources space: The key schedule 
was simplified and the input and output registers were 
removed. 

Nevertheless, for a hardware implementation, the main 
problem of this attack is the 212 counters needed to perform 
the key guess. Knowing that about 24,000 LUTs available 
on our FPGA, the implementation of 212 parallelized 
counters is much too expensive to be realistic (at 65,000 
LUTs). (We have to keep a sufficient bits size, say 16 bits, 
for the counters to have an efficient and feasible 
implementation.) 

This section will briefly introduce how we implement 
Matsui's linear cryptanalysis without 4,096 parallel 
counters in one FPGA board, keeping our very fast data 
throughput. We do it with 4,096 RAM-based counters. 
(We configure all the RAMs to have 8-bit address and 16-
bit data.)  

In practice, we need to implement 4,096 RAM based 
counter values, with only 32 parallel access (with real and 
writing operations; we use dual access RAMs). Therefore, 
this operation can be performed in 128 clock cycles. 

This is practically performed using a large 
serial/parallel converter making the ciphertext bits 
involved in Matsui’s linear approximation (4) available 
during 128 cycles. 

By choosing the plaintext bits involved in the linear 
approximation (4) such that they are fixed during the same 
128 clock cycles, we avoid the need of a serial/parallel 
converter for the plaintext bits. We also avoid the use of 
I0R operators between plaintext and ciphertext parts. 
Therefore, we spare a lot of hardware resources. We just 
need an n-delay shift register (SR block) to synchronize the 
design. 

To generate plaintext bits, we use an LFSR of 57 bits 
and a 6-bit counter (the remaining bit is used for the two 
DES parallelization). This counter controls the PL part used 
to calculate F1[15], varying every 128 cycles. Therefore, 
we obtain 128 successive cycles where the PL part of 
F1(PL,K1)[15] is constant. 

Knowing 256 parallelized results of 
PL[7,18,24,29]⊕PH[15]⊕CH[7,18,24]⊕F16(CL,K16)[7,18,24],  
we have to count the number of bits equal to 0 and subtract 
128, thanks to the previous comment (we only store the 
bias). We obtain 9-bit result, called bias in Fig. 6. 
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Depending on the 32 parallelized values of F1(PL,K1+i) 
[15], we have to carry out a subtraction or an addition 
between the 32 RAM values stored (in the correct address) 
and the bias value. (We have i = from 0 to 31 and К1 equal 
to 0 or 1.) 

Therefore, we get one Matsui's attack implementation 
that allows us to recover 12 + 1 secret key bits. Our 
cryptanalysis design is based on a sequentialized access of 
4,096 counters, without altering the encryption rate of two 
DES per cycle. To analyze our experiments, the 4,096 
RAMs stored results are sent to the PC when one of them 
exceeds the 16-bit RAM data size. In addition, the PC can 
send the secret key to the FPGA board. This allows us to 
perform very practical tests. 

 
7 EXPERIMENTAL RESULTS 

In this section, we give the results we got running 
Matsui's attack on eight Xilinx FPGAs (VIRTEX1000 
bg560-4). We carried out the experiments at a work 
frequency = 66.6 MHz (=226) (Because of the FPGA heat 
running at 66 MHz, we do not carry experiments at higher 
frequency. It is why we use our second 21-stage solution, 
which is the less resource consuming design.). Therefore, 
we are able to compute 2x226 equations per second. Using 
eight FPGA boards, 243 evaluations take less than 2.3 
hours. 

We performed tests with 71 different keys. Table 7 
summarizes the experimental success rate of the attack for 
various amounts N of chosen-plaintext/ciphertext pairs. 

These experimental results suggest that Matsui's 
theoretical analysis is quite good (see Tables 5 and 6). 
Indeed, our results are very close to mathematical 
estimations. 

 
CONCLUSION 

This paper deals with two new ideas for FPGA 
implementations of DES leading to four improved practical 
appropriate implementations. All of them are very efficient 
in terms of speed and/or resources needed. Then, this paper 
presents the first known FPGA implementation of Matsui's 
linear cryptanalysis. The resulting attack is capable of 
finding a 13-bit key in less than 2.3 hours, using eight 
FPGA boards. In addition, it is worth noting that, with the 
new Xilinx FPGA (Xilinx VIRTEX-II XC2V8000), we 
would be able to carry out the same attack in about 1 hour, 
using only one FPGA board. Therefore, in some 
applications, FPGAs can be used as powerful 
cryptographic calculation tools. 
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Мирошник М.А., Коваленко М.А. Использование 
ПЛИС для реализаций стандарта шифрования 
данных. В настоящей статье представлены две 
оригинальные реализации ПЛИС DES 
шифрования / дешифрования. Эта реализация 
являются самой быстродействующей в настоящее 
время. В схеме текст, ключ и режим (шифрование 
(кодирование) / расшифровка (декодирование)) могут 
быть изменены без пассивных циклов. 
Результирующая схема развернута на восемь и ПЛИС 
позволяет найти (12 + 1) битов ключа за 2,3 часов.  
Ключевые слова: криптография, стандарт 
шифрования данных, линейный криптоанализ, FPGA, 
эффективные реализации. 
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Мірошник М.А., Коваленко М.А. Використання 
ПЛІС для реалізацій стандарту шифрування даних. 
У цій статті представлені дві оригінальні реалізації 
ПЛІС DES шифрування / дешифрування. Ця реалізація 
є самою швидкодіючою в даний час. У схемі текст, 
ключ і режим (шифрування (кодування) / розшифровка 
(декодування)) можуть бути змінені без пасивних 
циклів. Результуюча схема розгорнута на вісім і ПЛІС 
дозволяє знайти (12 + 1) бітів ключа за 2,3 годин. 
Ключові слова: криптографія, стандарт шифрування 
даних, лінійний криптоаналіз, FPGA, ефективні 
реалізації. 
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